Installation

Hint

We also provide Docker support, which has already setup the environment for you.

Hint

We have a colab notebook guiding you step by step to setup the environment.

yesno colab notebook

icefall depends on k2 and lhotse.

We recommend that you use the following steps to install the dependencies.

Caution

Installation order matters.

(0) Install CUDA toolkit and cuDNN

Please refer to https://k2-fsa.github.io/k2/installation/cuda-cudnn.html to install CUDA and cuDNN.

(1) Install torch and torchaudio

Please refer https://pytorch.org/ to install torch and torchaudio.

Caution

Please install torch and torchaudio at the same time.

(2) Install k2

Please refer to https://k2-fsa.github.io/k2/installation/index.html to install k2.

Caution

Please don’t change your installed PyTorch after you have installed k2.

Note

We suggest that you install k2 from pre-compiled wheels by following https://k2-fsa.github.io/k2/installation/from_wheels.html

Hint

Please always install the latest version of k2.

(3) Install lhotse

Please refer to https://lhotse.readthedocs.io/en/latest/getting-started.html#installation to install lhotse.

Hint

We strongly recommend you to use:

pip install git+https://github.com/lhotse-speech/lhotse

to install the latest version of lhotse.

(4) Download icefall

icefall is a collection of Python scripts; what you need is to download it and set the environment variable PYTHONPATH to point to it.

Assume you want to place icefall in the folder /tmp. The following commands show you how to setup icefall:

cd /tmp
git clone https://github.com/k2-fsa/icefall
cd icefall
pip install -r requirements.txt
export PYTHONPATH=/tmp/icefall:$PYTHONPATH

Hint

You can put several versions of icefall in the same virtual environment. To switch among different versions of icefall, just set PYTHONPATH to point to the version you want.

Installation example

The following shows an example about setting up the environment.

(1) Create a virtual environment

kuangfangjun:~$ virtualenv -p python3.8 test-icefall
created virtual environment CPython3.8.0.final.0-64 in 9422ms
  creator CPython3Posix(dest=/star-fj/fangjun/test-icefall, clear=False, no_vcs_ignore=False, global=False)
  seeder FromAppData(download=False, pip=bundle, setuptools=bundle, wheel=bundle, via=copy, app_data_dir=/star-fj/fangjun/.local/share/virtualenv)
    added seed packages: pip==22.3.1, setuptools==65.6.3, wheel==0.38.4
  activators BashActivator,CShellActivator,FishActivator,NushellActivator,PowerShellActivator,PythonActivator

kuangfangjun:~$ source test-icefall/bin/activate

(test-icefall) kuangfangjun:~$

(2) Install CUDA toolkit and cuDNN

You need to determine the version of CUDA toolkit to install.

(test-icefall) kuangfangjun:~$ nvidia-smi | head -n 4

Wed Jul 26 21:57:49 2023
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 510.47.03    Driver Version: 510.47.03    CUDA Version: 11.6     |
|-------------------------------+----------------------+----------------------+

You can choose any CUDA version that is not greater than the version printed by nvidia-smi. In our case, we can choose any version <= 11.6.

We will use CUDA 11.6 in this example. Please follow https://k2-fsa.github.io/k2/installation/cuda-cudnn.html#cuda-11-6 to install CUDA toolkit and cuDNN if you have not done that before.

After installing CUDA toolkit, you can use the following command to verify it:

(test-icefall) kuangfangjun:~$ nvcc --version

nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2019 NVIDIA Corporation
Built on Wed_Oct_23_19:24:38_PDT_2019
Cuda compilation tools, release 10.2, V10.2.89

(3) Install torch and torchaudio

Since we have selected CUDA toolkit 11.6, we have to install a version of torch that is compiled against CUDA 11.6. We select torch 1.13.0+cu116 in this example.

After selecting the version of torch to install, we need to also install a compatible version of torchaudio, which is 0.13.0+cu116 in our case.

Please refer to https://pytorch.org/audio/stable/installation.html#compatibility-matrix to select an appropriate version of torchaudio to install if you use a different version of torch.

(test-icefall) kuangfangjun:~$ pip install torch==1.13.0+cu116 torchaudio==0.13.0+cu116 -f https://download.pytorch.org/whl/torch_stable.html

Looking in links: https://download.pytorch.org/whl/torch_stable.html
Collecting torch==1.13.0+cu116
  Downloading https://download.pytorch.org/whl/cu116/torch-1.13.0%2Bcu116-cp38-cp38-linux_x86_64.whl (1983.0 MB)
     ________________________________________ 2.0/2.0 GB 764.4 kB/s eta 0:00:00
Collecting torchaudio==0.13.0+cu116
  Downloading https://download.pytorch.org/whl/cu116/torchaudio-0.13.0%2Bcu116-cp38-cp38-linux_x86_64.whl (4.2 MB)
     ________________________________________ 4.2/4.2 MB 1.3 MB/s eta 0:00:00
Requirement already satisfied: typing-extensions in /star-fj/fangjun/test-icefall/lib/python3.8/site-packages (from torch==1.13.0+cu116) (4.7.1)
Installing collected packages: torch, torchaudio
Successfully installed torch-1.13.0+cu116 torchaudio-0.13.0+cu116

Verify that torch and torchaudio are successfully installed:

(test-icefall) kuangfangjun:~$ python3 -c "import torch; print(torch.__version__)"

1.13.0+cu116

(test-icefall) kuangfangjun:~$ python3 -c "import torchaudio; print(torchaudio.__version__)"

0.13.0+cu116

(4) Install k2

We will install k2 from pre-compiled wheels by following https://k2-fsa.github.io/k2/installation/from_wheels.html

(test-icefall) kuangfangjun:~$ pip install k2==1.24.3.dev20230725+cuda11.6.torch1.13.0 -f https://k2-fsa.github.io/k2/cuda.html
# For users from China
# 中国国内用户,如果访问不了 huggingface, 请使用
# pip install k2==1.24.3.dev20230725+cuda11.6.torch1.13.0 -f https://k2-fsa.github.io/k2/cuda-cn.html

Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Looking in links: https://k2-fsa.github.io/k2/cuda.html
Collecting k2==1.24.3.dev20230725+cuda11.6.torch1.13.0
  Downloading https://huggingface.co/csukuangfj/k2/resolve/main/ubuntu-cuda/k2-1.24.3.dev20230725%2Bcuda11.6.torch1.13.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (104.3 MB)
     ________________________________________ 104.3/104.3 MB 5.1 MB/s eta 0:00:00
Requirement already satisfied: torch==1.13.0 in /star-fj/fangjun/test-icefall/lib/python3.8/site-packages (from k2==1.24.3.dev20230725+cuda11.6.torch1.13.0) (1.13.0+cu116)
Collecting graphviz
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/de/5e/fcbb22c68208d39edff467809d06c9d81d7d27426460ebc598e55130c1aa/graphviz-0.20.1-py3-none-any.whl (47 kB)
Requirement already satisfied: typing-extensions in /star-fj/fangjun/test-icefall/lib/python3.8/site-packages (from torch==1.13.0->k2==1.24.3.dev20230725+cuda11.6.torch1.13.0) (4.7.1)
Installing collected packages: graphviz, k2
Successfully installed graphviz-0.20.1 k2-1.24.3.dev20230725+cuda11.6.torch1.13.0

Hint

Please refer to https://k2-fsa.github.io/k2/cuda.html for the available pre-compiled wheels about k2.

Verify that k2 has been installed successfully:

(test-icefall) kuangfangjun:~$ python3 -m k2.version

Collecting environment information...

k2 version: 1.24.3
Build type: Release
Git SHA1: 4c05309499a08454997adf500b56dcc629e35ae5
Git date: Tue Jul 25 16:23:36 2023
Cuda used to build k2: 11.6
cuDNN used to build k2: 8.3.2
Python version used to build k2: 3.8
OS used to build k2: CentOS Linux release 7.9.2009 (Core)
CMake version: 3.27.0
GCC version: 9.3.1
CMAKE_CUDA_FLAGS:  -Wno-deprecated-gpu-targets   -lineinfo --expt-extended-lambda -use_fast_math -Xptxas=-w  --expt-extended-lambda -gencode arch=compute_35,code=sm_35  -lineinfo --expt-extended-lambda -use_fast_math -Xptxas=-w  --expt-extended-lambda -gencode arch=compute_50,code=sm_50  -lineinfo --expt-extended-lambda -use_fast_math -Xptxas=-w  --expt-extended-lambda -gencode arch=compute_60,code=sm_60  -lineinfo --expt-extended-lambda -use_fast_math -Xptxas=-w  --expt-extended-lambda -gencode arch=compute_61,code=sm_61  -lineinfo --expt-extended-lambda -use_fast_math -Xptxas=-w  --expt-extended-lambda -gencode arch=compute_70,code=sm_70  -lineinfo --expt-extended-lambda -use_fast_math -Xptxas=-w  --expt-extended-lambda -gencode arch=compute_75,code=sm_75  -lineinfo --expt-extended-lambda -use_fast_math -Xptxas=-w  --expt-extended-lambda -gencode arch=compute_80,code=sm_80  -lineinfo --expt-extended-lambda -use_fast_math -Xptxas=-w  --expt-extended-lambda -gencode arch=compute_86,code=sm_86 -DONNX_NAMESPACE=onnx_c2 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_86,code=compute_86 -Xcudafe --diag_suppress=cc_clobber_ignored,--diag_suppress=integer_sign_change,--diag_suppress=useless_using_declaration,--diag_suppress=set_but_not_used,--diag_suppress=field_without_dll_interface,--diag_suppress=base_class_has_different_dll_interface,--diag_suppress=dll_interface_conflict_none_assumed,--diag_suppress=dll_interface_conflict_dllexport_assumed,--diag_suppress=implicit_return_from_non_void_function,--diag_suppress=unsigned_compare_with_zero,--diag_suppress=declared_but_not_referenced,--diag_suppress=bad_friend_decl --expt-relaxed-constexpr --expt-extended-lambda -D_GLIBCXX_USE_CXX11_ABI=0 --compiler-options -Wall  --compiler-options -Wno-strict-overflow  --compiler-options -Wno-unknown-pragmas
CMAKE_CXX_FLAGS:  -D_GLIBCXX_USE_CXX11_ABI=0 -Wno-unused-variable  -Wno-strict-overflow
PyTorch version used to build k2: 1.13.0+cu116
PyTorch is using Cuda: 11.6
NVTX enabled: True
With CUDA: True
Disable debug: True
Sync kernels : False
Disable checks: False
Max cpu memory allocate: 214748364800 bytes (or 200.0 GB)
k2 abort: False
__file__: /star-fj/fangjun/test-icefall/lib/python3.8/site-packages/k2/version/version.py
_k2.__file__: /star-fj/fangjun/test-icefall/lib/python3.8/site-packages/_k2.cpython-38-x86_64-linux-gnu.so

(5) Install lhotse

(test-icefall) kuangfangjun:~$ pip install git+https://github.com/lhotse-speech/lhotse

Collecting git+https://github.com/lhotse-speech/lhotse
  Cloning https://github.com/lhotse-speech/lhotse to /tmp/pip-req-build-vq12fd5i
  Running command git clone --filter=blob:none --quiet https://github.com/lhotse-speech/lhotse /tmp/pip-req-build-vq12fd5i
  Resolved https://github.com/lhotse-speech/lhotse to commit 7640d663469b22cd0b36f3246ee9b849cd25e3b7
  Installing build dependencies ... done
  Getting requirements to build wheel ... done
  Preparing metadata (pyproject.toml) ... done
Collecting cytoolz>=0.10.1
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/1e/3b/a7828d575aa17fb7acaf1ced49a3655aa36dad7e16eb7e6a2e4df0dda76f/cytoolz-0.12.2-cp38-cp38-
manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB)
     ________________________________________ 2.0/2.0 MB 33.2 MB/s eta 0:00:00
Collecting pyyaml>=5.3.1
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/c8/6b/6600ac24725c7388255b2f5add93f91e58a5d7efaf4af244fdbcc11a541b/PyYAML-6.0.1-cp38-cp38-ma
nylinux_2_17_x86_64.manylinux2014_x86_64.whl (736 kB)
     ________________________________________ 736.6/736.6 kB 38.6 MB/s eta 0:00:00
Collecting dataclasses
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/26/2f/1095cdc2868052dd1e64520f7c0d5c8c550ad297e944e641dbf1ffbb9a5d/dataclasses-0.6-py3-none-
any.whl (14 kB)
Requirement already satisfied: torchaudio in ./test-icefall/lib/python3.8/site-packages (from lhotse==1.16.0.dev0+git.7640d66.clean) (0.13.0+cu116)
Collecting lilcom>=1.1.0
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/a8/65/df0a69c52bd085ca1ad4e5c4c1a5c680e25f9477d8e49316c4ff1e5084a4/lilcom-1.7-cp38-cp38-many
linux_2_17_x86_64.manylinux2014_x86_64.whl (87 kB)
     ________________________________________ 87.1/87.1 kB 8.7 MB/s eta 0:00:00
Collecting tqdm
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/e6/02/a2cff6306177ae6bc73bc0665065de51dfb3b9db7373e122e2735faf0d97/tqdm-4.65.0-py3-none-any
.whl (77 kB)
Requirement already satisfied: numpy>=1.18.1 in ./test-icefall/lib/python3.8/site-packages (from lhotse==1.16.0.dev0+git.7640d66.clean) (1.24.4)
Collecting audioread>=2.1.9
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/5d/cb/82a002441902dccbe427406785db07af10182245ee639ea9f4d92907c923/audioread-3.0.0.tar.gz (
377 kB)
  Preparing metadata (setup.py) ... done
Collecting tabulate>=0.8.1
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/40/44/4a5f08c96eb108af5cb50b41f76142f0afa346dfa99d5296fe7202a11854/tabulate-0.9.0-py3-none-
any.whl (35 kB)
Collecting click>=7.1.1
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/1a/70/e63223f8116931d365993d4a6b7ef653a4d920b41d03de7c59499962821f/click-8.1.6-py3-none-any.
whl (97 kB)
     ________________________________________ 97.9/97.9 kB 8.4 MB/s eta 0:00:00
Collecting packaging
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/ab/c3/57f0601a2d4fe15de7a553c00adbc901425661bf048f2a22dfc500caf121/packaging-23.1-py3-none-
any.whl (48 kB)
Collecting intervaltree>=3.1.0
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/50/fb/396d568039d21344639db96d940d40eb62befe704ef849b27949ded5c3bb/intervaltree-3.1.0.tar.gz
 (32 kB)
  Preparing metadata (setup.py) ... done
Requirement already satisfied: torch in ./test-icefall/lib/python3.8/site-packages (from lhotse==1.16.0.dev0+git.7640d66.clean) (1.13.0+cu116)
Collecting SoundFile>=0.10
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/ad/bd/0602167a213d9184fc688b1086dc6d374b7ae8c33eccf169f9b50ce6568c/soundfile-0.12.1-py2.py3-
none-manylinux_2_17_x86_64.whl (1.3 MB)
     ________________________________________ 1.3/1.3 MB 46.5 MB/s eta 0:00:00
Collecting toolz>=0.8.0
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/7f/5c/922a3508f5bda2892be3df86c74f9cf1e01217c2b1f8a0ac4841d903e3e9/toolz-0.12.0-py3-none-any.whl (55 kB)
Collecting sortedcontainers<3.0,>=2.0
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/32/46/9cb0e58b2deb7f82b84065f37f3bffeb12413f947f9388e4cac22c4621ce/sortedcontainers-2.4.0-py2.py3-none-any.whl (29 kB)
Collecting cffi>=1.0
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/b7/8b/06f30caa03b5b3ac006de4f93478dbd0239e2a16566d81a106c322dc4f79/cffi-1.15.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (442 kB)
Requirement already satisfied: typing-extensions in ./test-icefall/lib/python3.8/site-packages (from torch->lhotse==1.16.0.dev0+git.7640d66.clean) (4.7.1)
Collecting pycparser
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/62/d5/5f610ebe421e85889f2e55e33b7f9a6795bd982198517d912eb1c76e1a53/pycparser-2.21-py2.py3-none-any.whl (118 kB)
Building wheels for collected packages: lhotse, audioread, intervaltree
  Building wheel for lhotse (pyproject.toml) ... done
  Created wheel for lhotse: filename=lhotse-1.16.0.dev0+git.7640d66.clean-py3-none-any.whl size=687627 sha256=cbf0a4d2d0b639b33b91637a4175bc251d6a021a069644ecb1a9f2b3a83d072a
  Stored in directory: /tmp/pip-ephem-wheel-cache-wwtk90_m/wheels/7f/7a/8e/a0bf241336e2e3cb573e1e21e5600952d49f5162454f2e612f
  Building wheel for audioread (setup.py) ... done
  Created wheel for audioread: filename=audioread-3.0.0-py3-none-any.whl size=23704 sha256=5e2d3537c96ce9cf0f645a654c671163707bf8cb8d9e358d0e2b0939a85ff4c2
  Stored in directory: /star-fj/fangjun/.cache/pip/wheels/e2/c3/9c/f19ae5a03f8862d9f0776b0c0570f1fdd60a119d90954e3f39
  Building wheel for intervaltree (setup.py) ... done
  Created wheel for intervaltree: filename=intervaltree-3.1.0-py2.py3-none-any.whl size=26098 sha256=2604170976cfffe0d2f678cb1a6e5b525f561cd50babe53d631a186734fec9f9
  Stored in directory: /star-fj/fangjun/.cache/pip/wheels/f3/ed/2b/c179ebfad4e15452d6baef59737f27beb9bfb442e0620f7271
Successfully built lhotse audioread intervaltree
Installing collected packages: sortedcontainers, dataclasses, tqdm, toolz, tabulate, pyyaml, pycparser, packaging, lilcom, intervaltree, click, audioread, cytoolz, cffi, SoundFile, lhotse
Successfully installed SoundFile-0.12.1 audioread-3.0.0 cffi-1.15.1 click-8.1.6 cytoolz-0.12.2 dataclasses-0.6 intervaltree-3.1.0 lhotse-1.16.0.dev0+git.7640d66.clean lilcom-1.7 packaging-23.1 pycparser-2.21 pyyaml-6.0.1 sortedcontainers-2.4.0 tabulate-0.9.0 toolz-0.12.0 tqdm-4.65.0

Verify that lhotse has been installed successfully:

(test-icefall) kuangfangjun:~$ python3 -c "import lhotse; print(lhotse.__version__)"

1.16.0.dev+git.7640d66.clean

(6) Download icefall

(test-icefall) kuangfangjun:~$ cd /tmp/

(test-icefall) kuangfangjun:tmp$ git clone https://github.com/k2-fsa/icefall

Cloning into 'icefall'...
remote: Enumerating objects: 12942, done.
remote: Counting objects: 100% (67/67), done.
remote: Compressing objects: 100% (56/56), done.
remote: Total 12942 (delta 17), reused 35 (delta 6), pack-reused 12875
Receiving objects: 100% (12942/12942), 14.77 MiB | 9.29 MiB/s, done.
Resolving deltas: 100% (8835/8835), done.

(test-icefall) kuangfangjun:tmp$ cd icefall/

(test-icefall) kuangfangjun:icefall$ pip install -r ./requirements.txt

Test Your Installation

To test that your installation is successful, let us run the yesno recipe on CPU.

Data preparation

(test-icefall) kuangfangjun:icefall$ export PYTHONPATH=/tmp/icefall:$PYTHONPATH

(test-icefall) kuangfangjun:icefall$ cd /tmp/icefall

(test-icefall) kuangfangjun:icefall$ cd egs/yesno/ASR

(test-icefall) kuangfangjun:ASR$ ./prepare.sh

The log of running ./prepare.sh is:

2023-07-27 12:41:39 (prepare.sh:27:main) dl_dir: /tmp/icefall/egs/yesno/ASR/download
2023-07-27 12:41:39 (prepare.sh:30:main) Stage 0: Download data
/tmp/icefall/egs/yesno/ASR/download/waves_yesno.tar.gz: 100%|___________________________________________________| 4.70M/4.70M [00:00<00:00, 11.1MB/s]
2023-07-27 12:41:46 (prepare.sh:39:main) Stage 1: Prepare yesno manifest
2023-07-27 12:41:50 (prepare.sh:45:main) Stage 2: Compute fbank for yesno
2023-07-27 12:41:55,718 INFO [compute_fbank_yesno.py:65] Processing train
Extracting and storing features: 100%|_______________________________________________________________________________| 90/90 [00:01<00:00, 87.82it/s]
2023-07-27 12:41:56,778 INFO [compute_fbank_yesno.py:65] Processing test
Extracting and storing features: 100%|______________________________________________________________________________| 30/30 [00:00<00:00, 256.92it/s]
2023-07-27 12:41:57 (prepare.sh:51:main) Stage 3: Prepare lang
2023-07-27 12:42:02 (prepare.sh:66:main) Stage 4: Prepare G
/project/kaldilm/csrc/arpa_file_parser.cc:void kaldilm::ArpaFileParser::Read(std::istream&):79
[I] Reading \data\ section.
/project/kaldilm/csrc/arpa_file_parser.cc:void kaldilm::ArpaFileParser::Read(std::istream&):140
[I] Reading \1-grams: section.
2023-07-27 12:42:02 (prepare.sh:92:main) Stage 5: Compile HLG
2023-07-27 12:42:07,275 INFO [compile_hlg.py:124] Processing data/lang_phone
2023-07-27 12:42:07,276 INFO [lexicon.py:171] Converting L.pt to Linv.pt
2023-07-27 12:42:07,309 INFO [compile_hlg.py:48] Building ctc_topo. max_token_id: 3
2023-07-27 12:42:07,310 INFO [compile_hlg.py:52] Loading G.fst.txt
2023-07-27 12:42:07,314 INFO [compile_hlg.py:62] Intersecting L and G
2023-07-27 12:42:07,323 INFO [compile_hlg.py:64] LG shape: (4, None)
2023-07-27 12:42:07,323 INFO [compile_hlg.py:66] Connecting LG
2023-07-27 12:42:07,323 INFO [compile_hlg.py:68] LG shape after k2.connect: (4, None)
2023-07-27 12:42:07,323 INFO [compile_hlg.py:70] <class 'torch.Tensor'>
2023-07-27 12:42:07,323 INFO [compile_hlg.py:71] Determinizing LG
2023-07-27 12:42:07,341 INFO [compile_hlg.py:74] <class '_k2.ragged.RaggedTensor'>
2023-07-27 12:42:07,341 INFO [compile_hlg.py:76] Connecting LG after k2.determinize
2023-07-27 12:42:07,341 INFO [compile_hlg.py:79] Removing disambiguation symbols on LG
2023-07-27 12:42:07,354 INFO [compile_hlg.py:91] LG shape after k2.remove_epsilon: (6, None)
2023-07-27 12:42:07,445 INFO [compile_hlg.py:96] Arc sorting LG
2023-07-27 12:42:07,445 INFO [compile_hlg.py:99] Composing H and LG
2023-07-27 12:42:07,446 INFO [compile_hlg.py:106] Connecting LG
2023-07-27 12:42:07,446 INFO [compile_hlg.py:109] Arc sorting LG
2023-07-27 12:42:07,447 INFO [compile_hlg.py:111] HLG.shape: (8, None)
2023-07-27 12:42:07,447 INFO [compile_hlg.py:127] Saving HLG.pt to data/lang_phone

Training

Now let us run the training part:

(test-icefall) kuangfangjun:ASR$ export CUDA_VISIBLE_DEVICES=""

(test-icefall) kuangfangjun:ASR$ ./tdnn/train.py

Caution

We use export CUDA_VISIBLE_DEVICES="" so that icefall uses CPU even if there are GPUs available.

Hint

In case you get a Segmentation fault (core dump) error, please use:

export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python

See more at <https://github.com/k2-fsa/icefall/issues/674> if you are interested.

The training log is given below:

2023-07-27 12:50:51,936 INFO [train.py:481] Training started
2023-07-27 12:50:51,936 INFO [train.py:482] {'exp_dir': PosixPath('tdnn/exp'), 'lang_dir': PosixPath('data/lang_phone'), 'lr': 0.01, 'feature_dim': 23, 'weight_decay': 1e-06, 'start_epoch': 0, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 10, 'reset_interval': 20, 'valid_interval': 10, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores': True, 'world_size': 1, 'master_port': 12354, 'tensorboard': True, 'num_epochs': 15, 'seed': 42, 'feature_dir': PosixPath('data/fbank'), 'max_duration': 30.0, 'bucketing_sampler': False, 'num_buckets': 10, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': False, 'return_cuts': True, 'num_workers': 2, 'env_info': {'k2-version': '1.24.3', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '4c05309499a08454997adf500b56dcc629e35ae5', 'k2-git-date': 'Tue Jul 25 16:23:36 2023', 'lhotse-version': '1.16.0.dev+git.7640d66.clean', 'torch-version': '1.13.0+cu116', 'torch-cuda-available': False, 'torch-cuda-version': '11.6', 'python-version': '3.8', 'icefall-git-branch': 'master', 'icefall-git-sha1': '3fb0a43-clean', 'icefall-git-date': 'Thu Jul 27 12:36:05 2023', 'icefall-path': '/tmp/icefall', 'k2-path': '/star-fj/fangjun/test-icefall/lib/python3.8/site-packages/k2/__init__.py', 'lhotse-path': '/star-fj/fangjun/test-icefall/lib/python3.8/site-packages/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-1-1220091118-57c4d55446-sph26', 'IP address': '10.177.77.20'}}
2023-07-27 12:50:51,941 INFO [lexicon.py:168] Loading pre-compiled data/lang_phone/Linv.pt
2023-07-27 12:50:51,949 INFO [train.py:495] device: cpu
2023-07-27 12:50:51,965 INFO [asr_datamodule.py:146] About to get train cuts
2023-07-27 12:50:51,965 INFO [asr_datamodule.py:244] About to get train cuts
2023-07-27 12:50:51,967 INFO [asr_datamodule.py:149] About to create train dataset
2023-07-27 12:50:51,967 INFO [asr_datamodule.py:199] Using SingleCutSampler.
2023-07-27 12:50:51,967 INFO [asr_datamodule.py:205] About to create train dataloader
2023-07-27 12:50:51,968 INFO [asr_datamodule.py:218] About to get test cuts
2023-07-27 12:50:51,968 INFO [asr_datamodule.py:252] About to get test cuts
2023-07-27 12:50:52,565 INFO [train.py:422] Epoch 0, batch 0, loss[loss=1.065, over 2436.00 frames. ], tot_loss[loss=1.065, over 2436.00 frames. ], batch size: 4
2023-07-27 12:50:53,681 INFO [train.py:422] Epoch 0, batch 10, loss[loss=0.4561, over 2828.00 frames. ], tot_loss[loss=0.7076, over 22192.90 frames.], batch size: 4
2023-07-27 12:50:54,167 INFO [train.py:444] Epoch 0, validation loss=0.9002, over 18067.00 frames.
2023-07-27 12:50:55,011 INFO [train.py:422] Epoch 0, batch 20, loss[loss=0.2555, over 2695.00 frames. ], tot_loss[loss=0.484, over 34971.47 frames. ], batch size: 5
2023-07-27 12:50:55,331 INFO [train.py:444] Epoch 0, validation loss=0.4688, over 18067.00 frames.
2023-07-27 12:50:55,368 INFO [checkpoint.py:75] Saving checkpoint to tdnn/exp/epoch-0.pt
2023-07-27 12:50:55,633 INFO [train.py:422] Epoch 1, batch 0, loss[loss=0.2532, over 2436.00 frames. ], tot_loss[loss=0.2532, over 2436.00 frames. ],
 batch size: 4
2023-07-27 12:50:56,242 INFO [train.py:422] Epoch 1, batch 10, loss[loss=0.1139, over 2828.00 frames. ], tot_loss[loss=0.1592, over 22192.90 frames.], batch size: 4
2023-07-27 12:50:56,522 INFO [train.py:444] Epoch 1, validation loss=0.1627, over 18067.00 frames.
2023-07-27 12:50:57,209 INFO [train.py:422] Epoch 1, batch 20, loss[loss=0.07055, over 2695.00 frames. ], tot_loss[loss=0.1175, over 34971.47 frames.], batch size: 5
2023-07-27 12:50:57,600 INFO [train.py:444] Epoch 1, validation loss=0.07091, over 18067.00 frames.
2023-07-27 12:50:57,640 INFO [checkpoint.py:75] Saving checkpoint to tdnn/exp/epoch-1.pt
2023-07-27 12:50:57,847 INFO [train.py:422] Epoch 2, batch 0, loss[loss=0.07731, over 2436.00 frames. ], tot_loss[loss=0.07731, over 2436.00 frames.], batch size: 4
2023-07-27 12:50:58,427 INFO [train.py:422] Epoch 2, batch 10, loss[loss=0.04391, over 2828.00 frames. ], tot_loss[loss=0.05341, over 22192.90 frames. ], batch size: 4
2023-07-27 12:50:58,884 INFO [train.py:444] Epoch 2, validation loss=0.04384, over 18067.00 frames.
2023-07-27 12:50:59,387 INFO [train.py:422] Epoch 2, batch 20, loss[loss=0.03458, over 2695.00 frames. ], tot_loss[loss=0.04616, over 34971.47 frames. ], batch size: 5
2023-07-27 12:50:59,707 INFO [train.py:444] Epoch 2, validation loss=0.03379, over 18067.00 frames.
2023-07-27 12:50:59,758 INFO [checkpoint.py:75] Saving checkpoint to tdnn/exp/epoch-2.pt

  ... ...

2023-07-27 12:51:23,433 INFO [train.py:422] Epoch 13, batch 0, loss[loss=0.01054, over 2436.00 frames. ], tot_loss[loss=0.01054, over 2436.00 frames. ], batch size: 4
2023-07-27 12:51:23,980 INFO [train.py:422] Epoch 13, batch 10, loss[loss=0.009014, over 2828.00 frames. ], tot_loss[loss=0.009974, over 22192.90 frames. ], batch size: 4
2023-07-27 12:51:24,489 INFO [train.py:444] Epoch 13, validation loss=0.01085, over 18067.00 frames.
2023-07-27 12:51:25,258 INFO [train.py:422] Epoch 13, batch 20, loss[loss=0.01172, over 2695.00 frames. ], tot_loss[loss=0.01055, over 34971.47 frames. ], batch size: 5
2023-07-27 12:51:25,621 INFO [train.py:444] Epoch 13, validation loss=0.01074, over 18067.00 frames.
2023-07-27 12:51:25,699 INFO [checkpoint.py:75] Saving checkpoint to tdnn/exp/epoch-13.pt
2023-07-27 12:51:25,866 INFO [train.py:422] Epoch 14, batch 0, loss[loss=0.01044, over 2436.00 frames. ], tot_loss[loss=0.01044, over 2436.00 frames. ], batch size: 4
2023-07-27 12:51:26,844 INFO [train.py:422] Epoch 14, batch 10, loss[loss=0.008942, over 2828.00 frames. ], tot_loss[loss=0.01, over 22192.90 frames. ], batch size: 4
2023-07-27 12:51:27,221 INFO [train.py:444] Epoch 14, validation loss=0.01082, over 18067.00 frames.
2023-07-27 12:51:27,970 INFO [train.py:422] Epoch 14, batch 20, loss[loss=0.01169, over 2695.00 frames. ], tot_loss[loss=0.01054, over 34971.47 frames. ], batch size: 5
2023-07-27 12:51:28,247 INFO [train.py:444] Epoch 14, validation loss=0.01073, over 18067.00 frames.
2023-07-27 12:51:28,323 INFO [checkpoint.py:75] Saving checkpoint to tdnn/exp/epoch-14.pt
2023-07-27 12:51:28,326 INFO [train.py:555] Done!

Decoding

Let us use the trained model to decode the test set:

(test-icefall) kuangfangjun:ASR$ ./tdnn/decode.py

2023-07-27 12:55:12,840 INFO [decode.py:263] Decoding started
2023-07-27 12:55:12,840 INFO [decode.py:264] {'exp_dir': PosixPath('tdnn/exp'), 'lang_dir': PosixPath('data/lang_phone'), 'lm_dir': PosixPath('data/lm'), 'feature_dim': 23, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True, 'epoch': 14, 'avg': 2, 'export': False, 'feature_dir': PosixPath('data/fbank'), 'max_duration': 30.0, 'bucketing_sampler': False, 'num_buckets': 10, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': False, 'return_cuts': True, 'num_workers': 2, 'env_info': {'k2-version': '1.24.3', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '4c05309499a08454997adf500b56dcc629e35ae5', 'k2-git-date': 'Tue Jul 25 16:23:36 2023', 'lhotse-version': '1.16.0.dev+git.7640d66.clean', 'torch-version': '1.13.0+cu116', 'torch-cuda-available': False, 'torch-cuda-version': '11.6', 'python-version': '3.8', 'icefall-git-branch': 'master', 'icefall-git-sha1': '3fb0a43-clean', 'icefall-git-date': 'Thu Jul 27 12:36:05 2023', 'icefall-path': '/tmp/icefall', 'k2-path': '/star-fj/fangjun/test-icefall/lib/python3.8/site-packages/k2/__init__.py', 'lhotse-path': '/star-fj/fangjun/test-icefall/lib/python3.8/site-packages/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-1-1220091118-57c4d55446-sph26', 'IP address': '10.177.77.20'}}
2023-07-27 12:55:12,841 INFO [lexicon.py:168] Loading pre-compiled data/lang_phone/Linv.pt
2023-07-27 12:55:12,855 INFO [decode.py:273] device: cpu
2023-07-27 12:55:12,868 INFO [decode.py:291] averaging ['tdnn/exp/epoch-13.pt', 'tdnn/exp/epoch-14.pt']
2023-07-27 12:55:12,882 INFO [asr_datamodule.py:218] About to get test cuts
2023-07-27 12:55:12,883 INFO [asr_datamodule.py:252] About to get test cuts
2023-07-27 12:55:13,157 INFO [decode.py:204] batch 0/?, cuts processed until now is 4
2023-07-27 12:55:13,701 INFO [decode.py:241] The transcripts are stored in tdnn/exp/recogs-test_set.txt
2023-07-27 12:55:13,702 INFO [utils.py:564] [test_set] %WER 0.42% [1 / 240, 0 ins, 1 del, 0 sub ]
2023-07-27 12:55:13,704 INFO [decode.py:249] Wrote detailed error stats to tdnn/exp/errs-test_set.txt
2023-07-27 12:55:13,704 INFO [decode.py:316] Done!

Congratulations! You have successfully setup the environment and have run the first recipe in icefall.

Have fun with icefall!

YouTube Video

We provide the following YouTube video showing how to install icefall. It also shows how to debug various problems that you may encounter while using icefall.

Note

To get the latest news of next-gen Kaldi, please subscribe the following YouTube channel by Nadira Povey: