VITS-VCTK
This tutorial shows you how to train an VITS model with the VCTK dataset.
Note
TTS related recipes require packages in requirements-tts.txt
.
Note
The VITS paper: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech
Data preparation
$ cd egs/vctk/TTS
$ ./prepare.sh
To run stage 1 to stage 6, use
$ ./prepare.sh --stage 1 --stop_stage 6
Build Monotonic Alignment Search
To build the monotonic alignment search, use the following commands:
$ ./prepare.sh --stage -1 --stop_stage -1
or
$ cd vits/monotonic_align
$ python setup.py build_ext --inplace
$ cd ../../
Training
$ export CUDA_VISIBLE_DEVICES="0,1,2,3"
$ ./vits/train.py \
--world-size 4 \
--num-epochs 1000 \
--start-epoch 1 \
--use-fp16 1 \
--exp-dir vits/exp \
--tokens data/tokens.txt
--max-duration 350
Note
You can adjust the hyper-parameters to control the size of the VITS model and
the training configurations. For more details, please run ./vits/train.py --help
.
Note
The training can take a long time (usually a couple of days).
Training logs, checkpoints and tensorboard logs are saved in vits/exp
.
Inference
The inference part uses checkpoints saved by the training part, so you have to run the
training part first. It will save the ground-truth and generated wavs to the directory
vits/exp/infer/epoch-*/wav
, e.g., vits/exp/infer/epoch-1000/wav
.
$ export CUDA_VISIBLE_DEVICES="0"
$ ./vits/infer.py \
--epoch 1000 \
--exp-dir vits/exp \
--tokens data/tokens.txt \
--max-duration 500
Note
For more details, please run ./vits/infer.py --help
.
Export models
Currently we only support ONNX model exporting. It will generate two files in the given exp-dir
:
vits-epoch-*.onnx
and vits-epoch-*.int8.onnx
.
$ ./vits/export-onnx.py \
--epoch 1000 \
--exp-dir vits/exp \
--tokens data/tokens.txt
You can test the exported ONNX model with:
$ ./vits/test_onnx.py \
--model-filename vits/exp/vits-epoch-1000.onnx \
--tokens data/tokens.txt
Download pretrained models
If you don’t want to train from scratch, you can download the pretrained models by visiting the following link: