sherpa
1.3
  • Introduction
  • Download pdf
  • Social groups
  • Run Next-gen Kaldi in your browser
  • Pre-trained models

k2-fsa/sherpa

  • sherpa

k2-fsa/sherpa-ncnn

  • sherpa-ncnn

k2-fsa/sherpa-onnx

  • sherpa-onnx
    • Tutorials
    • Installation
    • Frequently Asked Question (FAQs)
    • Python
    • C API
    • Java API
    • Javascript API
    • Kotlin API
    • Swift API
    • Go API
    • C# API
    • Pascal API
    • Lazarus
    • WebAssembly
    • Android
    • HarmonyOS
    • iOS
    • Flutter
    • WebSocket
    • Hotwords (Contextual biasing)
    • Keyword spotting
    • Punctuation
    • Audio tagging
    • Spoken language identification
    • VAD
    • Pre-trained models
    • Moonshine
    • SenseVoice
    • FireRedAsr
    • Dolphin
    • Speaker Diarization
    • Speaker Identification
    • Speech enhancement
    • rknn
      • Tutorials
      • Install
      • Pre-trained models
    • Text-to-speech (TTS)

Triton

  • Triton
sherpa
  • »
  • sherpa-onnx »
  • rknn
  • Edit on GitHub

rknn

This section describes how to use sherpa-onnx with RKNPU from Rockchip.

The following boards are known to work:

  • RK3588

  • RK3576

  • RK3568

  • RK3566

  • RK3562

  • Tutorials
    • Zipformer on LubanCat
  • Install
    • From pre-built wheels using pip install
    • Build sherpa-onnx directly on your board
    • Cross-compiling
      • Dynamic link
      • Static link
  • Pre-trained models
    • sherpa-onnx-rk3588-streaming-zipformer-small-bilingual-zh-en-2023-02-16
      • Decode files
      • Real-time speech recognition from a microphone
    • sherpa-onnx-rk3588-streaming-zipformer-bilingual-zh-en-2023-02-20
      • Decode files
      • Real-time speech recognition from a microphone
Previous Next

© Copyright 2022-2025, sherpa development team.

Built with Sphinx using a theme provided by Read the Docs.