sherpa
1.3
  • Introduction
  • Download pdf
  • Social groups
  • Run Next-gen Kaldi in your browser
  • Pre-trained models

k2-fsa/sherpa

  • sherpa

k2-fsa/sherpa-ncnn

  • sherpa-ncnn

k2-fsa/sherpa-onnx

  • sherpa-onnx
    • Tutorials
    • Installation
    • Frequently Asked Question (FAQs)
    • Python
    • C API
    • Java API
    • Javascript API
    • Kotlin API
    • Swift API
    • Go API
    • C# API
    • Pascal API
    • Lazarus
    • WebAssembly
    • Android
    • HarmonyOS
    • iOS
    • Flutter
    • WebSocket
    • Hotwords (Contextual biasing)
    • Keyword spotting
    • Punctuation
    • Audio tagging
    • Spoken language identification
    • VAD
    • Pre-trained models
    • Moonshine
    • SenseVoice
    • FireRedAsr
    • Dolphin
    • 拼音词组匹配替换
    • Speaker Diarization
    • Speaker Identification
    • Speech enhancement
    • Source separation
      • Hugginface space for source separation
      • Source separation models
    • rknn
    • Text-to-speech (TTS)

Triton

  • Triton
sherpa
  • »
  • sherpa-onnx »
  • Source separation
  • Edit on GitHub

Source separation

This page describes how to use sherpa-onnx for source separation.

  • Hugginface space for source separation
  • Source separation models
    • Spleeter
      • Download the model
      • Download test files
      • Example 1/2 with qi-feng-le-zh.wav
      • Example 2/2 with audio_example.wav
      • RTF on RK3588
      • Python example
    • UVR
      • Download the model
      • Download test files
      • Example 1/2 with qi-feng-le-zh.wav
      • Example 2/2 with audio_example.wav
      • Python example
Previous Next

© Copyright 2022-2025, sherpa development team.

Built with Sphinx using a theme provided by Read the Docs.