Install the Python Package
You can select one of the following methods to install the Python package.
Method 1 (From pre-compiled wheels, CPU only)
Hint
This method supports the following platfroms:
Linux (
x64
,aarch64
,armv7l
),macOS (
x64
,arm64
)Windows (
x64
,x86
)
Note that this method installs a CPU-only version of sherpa-onnx.
pip install sherpa-onnx
To check you have installed sherpa-onnx successfully, please run
python3 -c "import sherpa_onnx; print(sherpa_onnx.__file__)"
which sherpa-onnx
sherpa-onnx --help
ls -lh $(dirname $(which sherpa-onnx))/sherpa-onnx*
Hint
You can find previous releases at https://k2-fsa.github.io/sherpa/onnx/cpu.html
For Chinese users and users who have no access to huggingface, please visit https://k2-fsa.github.io/sherpa/onnx/cpu-cn.html.
You can use:
pip install sherpa-onnx -f https://k2-fsa.github.io/sherpa/onnx/cpu.html
or:
# For Chinese uers
pip install sherpa-onnx -f https://k2-fsa.github.io/sherpa/onnx/cpu-cn.html
Method 2 (From pre-compiled wheels, CPU + CUDA)
Note
This method installs a version of sherpa-onnx supporting both CUDA
and CPU
. You need to pass the argument provider=cuda
to use
NVIDIA GPU, which always uses GPU 0. Otherwise, it uses CPU
by default.
Please use the environment variable CUDA_VISIBLE_DEVICES
to control
which GPU is mapped to GPU 0.
By default, provider
is set to cpu
.
Remeber to follow https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html#requirements to install CUDA 11.8.
If you have issues about installing CUDA 11.8, please have a look at https://k2-fsa.github.io/k2/installation/cuda-cudnn.html#cuda-11-8.
Note that you don’t need to have sudo
permission to install CUDA 11.8
This approach supports only Linux x64 and Windows x64.
Please use the following command to install CUDA-enabled sherpa-onnx:
# We use 1.10.16 here for demonstration.
#
# Please visit https://k2-fsa.github.io/sherpa/onnx/cuda.html
# to find available versions
pip install sherpa-onnx==1.10.16+cuda -f https://k2-fsa.github.io/sherpa/onnx/cuda.html
# For Chinese users, please use
# pip install sherpa-onnx==1.10.16+cuda -f https://k2-fsa.github.io/sherpa/onnx/cuda-cn.html
The installation logs are given below:
Looking in links: https://k2-fsa.github.io/sherpa/onnx/cuda.html
Collecting sherpa-onnx==1.10.16+cuda
Downloading https://huggingface.co/csukuangfj/sherpa-onnx-wheels/resolve/main/cuda/1.10.16/sherpa_onnx-1.10.16%2Bcuda-cp310-cp310-linux_x86_64.whl (183.3 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 183.3/183.3 MB 4.4 MB/s eta 0:00:00
Installing collected packages: sherpa-onnx
Successfully installed sherpa-onnx-1.10.16+cuda
To check that you have installed sherpa-onnx successfully, please run:
python3 -c "import sherpa_onnx; print(sherpa_onnx.__version__)"
which should print something like below:
1.10.16+cuda
Method 3 (From source)
git clone https://github.com/k2-fsa/sherpa-onnx
cd sherpa-onnx
python3 setup.py install
git clone https://github.com/k2-fsa/sherpa-onnx
export SHERPA_ONNX_CMAKE_ARGS="-DSHERPA_ONNX_ENABLE_GPU=ON"
cd sherpa-onnx
python3 setup.py install
Method 4 (For developers)
git clone https://github.com/k2-fsa/sherpa-onnx
cd sherpa-onnx
mkdir build
cd build
cmake \
-DSHERPA_ONNX_ENABLE_PYTHON=ON \
-DBUILD_SHARED_LIBS=ON \
-DSHERPA_ONNX_ENABLE_CHECK=OFF \
-DSHERPA_ONNX_ENABLE_PORTAUDIO=OFF \
-DSHERPA_ONNX_ENABLE_C_API=OFF \
-DSHERPA_ONNX_ENABLE_WEBSOCKET=OFF \
..
make -j
export PYTHONPATH=$PWD/../sherpa-onnx/python/:$PWD/lib:$PYTHONPATH
git clone https://github.com/k2-fsa/sherpa-onnx
cd sherpa-onnx
mkdir build
cd build
cmake \
-DSHERPA_ONNX_ENABLE_PYTHON=ON \
-DBUILD_SHARED_LIBS=ON \
-DSHERPA_ONNX_ENABLE_CHECK=OFF \
-DSHERPA_ONNX_ENABLE_PORTAUDIO=OFF \
-DSHERPA_ONNX_ENABLE_C_API=OFF \
-DSHERPA_ONNX_ENABLE_WEBSOCKET=OFF \
-DSHERPA_ONNX_ENABLE_GPU=ON \
..
make -j
export PYTHONPATH=$PWD/../sherpa-onnx/python/:$PWD/lib:$PYTHONPATH
Hint
You need to install CUDA toolkit. Otherwise, you would get errors at runtime.
You can refer to https://k2-fsa.github.io/k2/installation/cuda-cudnn.html to install CUDA toolkit.
Check your installation
To check that sherpa-onnx has been successfully installed, please use:
python3 -c "import sherpa_onnx; print(sherpa_onnx.__file__)"
It should print some output like below:
/Users/fangjun/py38/lib/python3.8/site-packages/sherpa_onnx/__init__.py
Please refer to:
for usages.
Please refer to Pre-trained models for a list of pre-trained models.