Pre-trained Models
This page describes how to download pre-trained SenseVoice models.
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17 (Chinese, English, Japanese, Korean, Cantonese, 中英日韩粤语)
This model is converted from https://www.modelscope.cn/models/iic/SenseVoiceSmall using the script export-onnx.py.
It supports the following 5 languages:
Chinese (Mandarin, 普通话)
Cantonese (粤语, 广东话)
English
Japanese
Korean
In the following, we describe how to use it.
Hint
For RKNN users, please refer to sherpa-onnx-rk3588-20-seconds-sense-voice-zh-en-ja-ko-yue-2024-07-17 (Chinese, English, Japanese, Korean, Cantonese, 中英日韩粤语).
Huggingface space
You can visit
to try this model in your browser.
Hint
You need to first select the language Chinese+English+Cantonese+Japanese+Korean
and then select the model csukuangfj/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17
.
Android APKs
Real-time speech recognition Android APKs can be found at
Please always download the latest version.
Hint
Please search for zh_en_ko_ja_yue-sense_voice_2024_07_17_int8.apk
in the above page, e.g.,
sherpa-onnx-1.12.11-arm64-v8a-simulated_streaming_asr-zh_en_ko_ja_yue-sense_voice_2024_07_17_int8.apk
.
Hint
For Chinese users, you can also visit https://k2-fsa.github.io/sherpa/onnx/android/apk-simulate-streaming-asr-cn.html
Download
Please use the following commands to download it:
cd /path/to/sherpa-onnx
wget https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17.tar.bz2
tar xvf sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17.tar.bz2
rm sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17.tar.bz2
After downloading, you should find the following files:
ls -lh sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17
total 1.1G
-rw-r--r-- 1 runner docker 71 Jul 18 13:06 LICENSE
-rw-r--r-- 1 runner docker 104 Jul 18 13:06 README.md
-rwxr-xr-x 1 runner docker 5.8K Jul 18 13:06 export-onnx.py
-rw-r--r-- 1 runner docker 229M Jul 18 13:06 model.int8.onnx
-rw-r--r-- 1 runner docker 895M Jul 18 13:06 model.onnx
drwxr-xr-x 2 runner docker 4.0K Jul 18 13:06 test_wavs
-rw-r--r-- 1 runner docker 309K Jul 18 13:06 tokens.txt
ls -lh sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/test_wavs
total 940K
-rw-r--r-- 1 runner docker 224K Jul 18 13:06 en.wav
-rw-r--r-- 1 runner docker 226K Jul 18 13:06 ja.wav
-rw-r--r-- 1 runner docker 145K Jul 18 13:06 ko.wav
-rw-r--r-- 1 runner docker 161K Jul 18 13:06 yue.wav
-rw-r--r-- 1 runner docker 175K Jul 18 13:06 zh.wav
Hint
If you only need the
int8
model file, please use:wget https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2024-07-17.tar.bz2 tar xvf sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2024-07-17.tar.bz2 rm sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2024-07-17.tar.bz2 ls -lh sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2024-07-17
It prints:
total 229M
-rwxr-xr-x 1 1001 118 5.8K Jul 18 2024 export-onnx.py
-rw-r--r-- 1 1001 118 71 Jul 18 2024 LICENSE
-rw-r--r-- 1 1001 118 229M Jul 18 2024 model.int8.onnx
-rw-r--r-- 1 1001 118 104 Jul 18 2024 README.md
drwxr-xr-x 2 1001 118 4.0K Jul 18 2024 test_wavs
-rw-r--r-- 1 1001 118 309K Jul 18 2024 tokens.txt
Decode a file with model.onnx
Without inverse text normalization
To decode a file without inverse text normalization, please use:
./build/bin/sherpa-onnx-offline \
--tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/tokens.txt \
--sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/model.onnx \
--num-threads=1 \
--debug=0 \
./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/test_wavs/zh.wav \
./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/test_wavs/en.wav
You should see the following output:
/Users/fangjun/open-source/sherpa-onnx/sherpa-onnx/csrc/parse-options.cc:Read:375 ./build/bin/sherpa-onnx-offline --tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/tokens.txt --sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/model.onnx --num-threads=1 --debug=0 ./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/test_wavs/zh.wav ./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/test_wavs/en.wav
OfflineRecognizerConfig(feat_config=FeatureExtractorConfig(sampling_rate=16000, feature_dim=80, low_freq=20, high_freq=-400, dither=0), model_config=OfflineModelConfig(transducer=OfflineTransducerModelConfig(encoder_filename="", decoder_filename="", joiner_filename=""), paraformer=OfflineParaformerModelConfig(model=""), nemo_ctc=OfflineNemoEncDecCtcModelConfig(model=""), whisper=OfflineWhisperModelConfig(encoder="", decoder="", language="", task="transcribe", tail_paddings=-1), tdnn=OfflineTdnnModelConfig(model=""), zipformer_ctc=OfflineZipformerCtcModelConfig(model=""), wenet_ctc=OfflineWenetCtcModelConfig(model=""), sense_voice=OfflineSenseVoiceModelConfig(model="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/model.onnx", language="auto", use_itn=False), telespeech_ctc="", tokens="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/tokens.txt", num_threads=1, debug=False, provider="cpu", model_type="", modeling_unit="cjkchar", bpe_vocab=""), lm_config=OfflineLMConfig(model="", scale=0.5), ctc_fst_decoder_config=OfflineCtcFstDecoderConfig(graph="", max_active=3000), decoding_method="greedy_search", max_active_paths=4, hotwords_file="", hotwords_score=1.5, blank_penalty=0, rule_fsts="", rule_fars="")
Creating recognizer ...
Started
Done!
./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/test_wavs/zh.wav
{"text": "开饭时间早上九点至下午五点", "timestamps": [0.72, 0.96, 1.26, 1.44, 1.92, 2.10, 2.58, 2.82, 3.30, 3.90, 4.20, 4.56, 4.74], "tokens":["开", "饭", "时", "间", "早", "上", "九", "点", "至", "下", "午", "五", "点"], "words": []}
----
./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/test_wavs/en.wav
{"text": "the tribal chieftain called for the boy and presented him with fifty pieces of gold", "timestamps": [0.90, 1.26, 1.56, 1.80, 2.16, 2.46, 2.76, 2.94, 3.12, 3.60, 3.96, 4.50, 4.74, 5.10, 5.52, 5.88, 6.18], "tokens":["the", " tri", "bal", " chief", "tain", " called", " for", " the", " boy", " and", " presented", " him", " with", " fifty", " pieces", " of", " gold"], "words": []}
----
num threads: 1
decoding method: greedy_search
Elapsed seconds: 2.320 s
Real time factor (RTF): 2.320 / 12.744 = 0.182
With inverse text normalization
To decode a file with inverse text normalization, please use:
./build/bin/sherpa-onnx-offline \
--tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/tokens.txt \
--sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/model.onnx \
--num-threads=1 \
--sense-voice-use-itn=1 \
--debug=0 \
./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/test_wavs/zh.wav \
./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/test_wavs/en.wav
You should see the following output:
/Users/fangjun/open-source/sherpa-onnx/sherpa-onnx/csrc/parse-options.cc:Read:375 ./build/bin/sherpa-onnx-offline --tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/tokens.txt --sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/model.onnx --num-threads=1 --sense-voice-use-itn=1 --debug=0 ./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/test_wavs/zh.wav ./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/test_wavs/en.wav
OfflineRecognizerConfig(feat_config=FeatureExtractorConfig(sampling_rate=16000, feature_dim=80, low_freq=20, high_freq=-400, dither=0), model_config=OfflineModelConfig(transducer=OfflineTransducerModelConfig(encoder_filename="", decoder_filename="", joiner_filename=""), paraformer=OfflineParaformerModelConfig(model=""), nemo_ctc=OfflineNemoEncDecCtcModelConfig(model=""), whisper=OfflineWhisperModelConfig(encoder="", decoder="", language="", task="transcribe", tail_paddings=-1), tdnn=OfflineTdnnModelConfig(model=""), zipformer_ctc=OfflineZipformerCtcModelConfig(model=""), wenet_ctc=OfflineWenetCtcModelConfig(model=""), sense_voice=OfflineSenseVoiceModelConfig(model="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/model.onnx", language="auto", use_itn=True), telespeech_ctc="", tokens="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/tokens.txt", num_threads=1, debug=False, provider="cpu", model_type="", modeling_unit="cjkchar", bpe_vocab=""), lm_config=OfflineLMConfig(model="", scale=0.5), ctc_fst_decoder_config=OfflineCtcFstDecoderConfig(graph="", max_active=3000), decoding_method="greedy_search", max_active_paths=4, hotwords_file="", hotwords_score=1.5, blank_penalty=0, rule_fsts="", rule_fars="")
Creating recognizer ...
Started
Done!
./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/test_wavs/zh.wav
{"text": "开放时间早上9点至下午5点。", "timestamps": [0.72, 0.96, 1.26, 1.44, 1.92, 2.10, 2.58, 2.82, 3.30, 3.90, 4.20, 4.56, 4.74, 5.46], "tokens":["开", "放", "时", "间", "早", "上", "9", "点", "至", "下", "午", "5", "点", "。"], "words": []}
----
./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/test_wavs/en.wav
{"text": "The tribal chieftain called for the boy and presented him with 50 pieces of gold.", "timestamps": [0.90, 1.26, 1.56, 1.80, 2.16, 2.46, 2.76, 2.94, 3.12, 3.60, 3.96, 4.50, 4.74, 4.92, 5.10, 5.28, 5.52, 5.88, 6.18, 7.02], "tokens":["The", " tri", "bal", " chief", "tain", " called", " for", " the", " boy", " and", " presented", " him", " with", " ", "5", "0", " pieces", " of", " gold", "."], "words": []}
----
num threads: 1
decoding method: greedy_search
Elapsed seconds: 1.543 s
Real time factor (RTF): 1.543 / 12.744 = 0.121
Hint
When inverse text normalziation is enabled, the results also punctuations.
Specify a language
If you don’t provide a language when decoding, it uses auto
.
To specify the language when decoding, please use:
./build/bin/sherpa-onnx-offline \
--tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/tokens.txt \
--sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/model.onnx \
--num-threads=1 \
--sense-voice-language=zh \
--debug=0 \
./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/test_wavs/zh.wav
You should see the following output:
/Users/fangjun/open-source/sherpa-onnx/sherpa-onnx/csrc/parse-options.cc:Read:375 ./build/bin/sherpa-onnx-offline --tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/tokens.txt --sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/model.onnx --num-threads=1 --sense-voice-language=zh --debug=0 ./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/test_wavs/zh.wav
OfflineRecognizerConfig(feat_config=FeatureExtractorConfig(sampling_rate=16000, feature_dim=80, low_freq=20, high_freq=-400, dither=0), model_config=OfflineModelConfig(transducer=OfflineTransducerModelConfig(encoder_filename="", decoder_filename="", joiner_filename=""), paraformer=OfflineParaformerModelConfig(model=""), nemo_ctc=OfflineNemoEncDecCtcModelConfig(model=""), whisper=OfflineWhisperModelConfig(encoder="", decoder="", language="", task="transcribe", tail_paddings=-1), tdnn=OfflineTdnnModelConfig(model=""), zipformer_ctc=OfflineZipformerCtcModelConfig(model=""), wenet_ctc=OfflineWenetCtcModelConfig(model=""), sense_voice=OfflineSenseVoiceModelConfig(model="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/model.onnx", language="zh", use_itn=False), telespeech_ctc="", tokens="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/tokens.txt", num_threads=1, debug=False, provider="cpu", model_type="", modeling_unit="cjkchar", bpe_vocab=""), lm_config=OfflineLMConfig(model="", scale=0.5), ctc_fst_decoder_config=OfflineCtcFstDecoderConfig(graph="", max_active=3000), decoding_method="greedy_search", max_active_paths=4, hotwords_file="", hotwords_score=1.5, blank_penalty=0, rule_fsts="", rule_fars="")
Creating recognizer ...
Started
Done!
./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/test_wavs/zh.wav
{"text": "开饭时间早上九点至下午五点", "timestamps": [0.72, 0.96, 1.26, 1.44, 1.92, 2.10, 2.58, 2.82, 3.30, 3.90, 4.20, 4.56, 4.74], "tokens":["开", "饭", "时", "间", "早", "上", "九", "点", "至", "下", "午", "五", "点"], "words": []}
----
num threads: 1
decoding method: greedy_search
Elapsed seconds: 0.625 s
Real time factor (RTF): 0.625 / 5.592 = 0.112
Hint
Valid values for --sense-voice-language
are auto
, zh
, en
, ko
, ja
, and yue
.
where zh
is for Chinese, en
for English, ko
for Korean, ja
for Japanese, and
yue
for Cantonese
.
Speech recognition from a microphone
./build/bin/sherpa-onnx-microphone-offline \
--tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/tokens.txt \
--sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/model.int8.onnx
Speech recognition from a microphone with VAD
wget https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx
./build/bin/sherpa-onnx-vad-microphone-offline-asr \
--silero-vad-model=./silero_vad.onnx \
--tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/tokens.txt \
--sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/model.int8.onnx
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09 (Chinese, English, Japanese, Korean, Cantonese, 中英日韩粤语)
This model is converted from
It is fine-tuned on sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17 (Chinese, English, Japanese, Korean, Cantonese, 中英日韩粤语) with 21.8k hours
of Cantonese
data.
It supports the following 5 languages:
Chinese (Mandarin, 普通话)
Cantonese (粤语, 广东话)
English
Japanese
Korean
Hint
If you want a Cantonese
ASR model, please choose this model or
sherpa-onnx-wenetspeech-yue-u2pp-conformer-ctc-zh-en-cantonese-int8-2025-09-10 (Cantonese, 粤语)
Hint
For RKNN users, please refer to sherpa-onnx-rk3588-20-seconds-sense-voice-zh-en-ja-ko-yue-2025-09-09 (Chinese, English, Japanese, Korean, Cantonese, 中英日韩粤语).
In the following, we describe how to use it.
Huggingface space
You can visit
to try this model in your browser.
Hint
You need to first select the language Chinese+English+Cantonese+Japanese+Korean
and then select the model csukuangfj/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09
.
Android APKs
Real-time speech recognition Android APKs can be found at
Please always download the latest version.
Hint
Please search for zh_en_ko_ja_yue-sense_voice_2025_09_09_int8.apk
in the above page, e.g.,
sherpa-onnx-1.12.11-arm64-v8a-simulated_streaming_asr-zh_en_ko_ja_yue-sense_voice_2025_09_09_int8.apk
.
Hint
For Chinese users, you can also visit https://k2-fsa.github.io/sherpa/onnx/android/apk-simulate-streaming-asr-cn.html
Download
Please use the following commands to download it:
cd /path/to/sherpa-onnx
wget https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09.tar.bz2
tar xvf sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09.tar.bz2
rm sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09.tar.bz2
After downloading, you should find the following files:
ls -lh sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09
total 492952
-rw-r--r-- 1 fangjun staff 131B Sep 9 21:12 README.md
-rw-r--r-- 1 fangjun staff 226M Sep 9 21:12 model.int8.onnx
drwxr-xr-x 25 fangjun staff 800B Sep 9 21:12 test_wavs
-rw-r--r-- 1 fangjun staff 308K Sep 9 21:12 tokens.txt
ls sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/
en.wav ko.wav yue-1.wav yue-11.wav yue-13.wav yue-15.wav yue-17.wav yue-3.wav yue-5.wav yue-7.wav yue-9.wav zh.wav
ja.wav yue-0.wav yue-10.wav yue-12.wav yue-14.wav yue-16.wav yue-2.wav yue-4.wav yue-6.wav yue-8.wav yue.wav
In the following, we show how to decode the files sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-*.wav
.
yue-0.wav
Wave filename | Content | Ground truth |
---|---|---|
yue-0.wav | 两只小企鹅都有嘢食 |
./build/bin/sherpa-onnx-offline \
--tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt \
--sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx \
--num-threads=1 \
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-0.wav
/Users/fangjun/open-source/sherpa-onnx/sherpa-onnx/csrc/parse-options.cc:Read:372 ./build/bin/sherpa-onnx-offline --tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt --sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx --num-threads=1 sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-0.wav
OfflineRecognizerConfig(feat_config=FeatureExtractorConfig(sampling_rate=16000, feature_dim=80, low_freq=20, high_freq=-400, dither=0, normalize_samples=True, snip_edges=False), model_config=OfflineModelConfig(transducer=OfflineTransducerModelConfig(encoder_filename="", decoder_filename="", joiner_filename=""), paraformer=OfflineParaformerModelConfig(model=""), nemo_ctc=OfflineNemoEncDecCtcModelConfig(model=""), whisper=OfflineWhisperModelConfig(encoder="", decoder="", language="", task="transcribe", tail_paddings=-1), fire_red_asr=OfflineFireRedAsrModelConfig(encoder="", decoder=""), tdnn=OfflineTdnnModelConfig(model=""), zipformer_ctc=OfflineZipformerCtcModelConfig(model=""), wenet_ctc=OfflineWenetCtcModelConfig(model=""), sense_voice=OfflineSenseVoiceModelConfig(model="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx", language="auto", use_itn=False), moonshine=OfflineMoonshineModelConfig(preprocessor="", encoder="", uncached_decoder="", cached_decoder=""), dolphin=OfflineDolphinModelConfig(model=""), canary=OfflineCanaryModelConfig(encoder="", decoder="", src_lang="", tgt_lang="", use_pnc=True), telespeech_ctc="", tokens="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt", num_threads=1, debug=False, provider="cpu", model_type="", modeling_unit="cjkchar", bpe_vocab=""), lm_config=OfflineLMConfig(model="", scale=0.5, lodr_scale=0.01, lodr_fst="", lodr_backoff_id=-1), ctc_fst_decoder_config=OfflineCtcFstDecoderConfig(graph="", max_active=3000), decoding_method="greedy_search", max_active_paths=4, hotwords_file="", hotwords_score=1.5, blank_penalty=0, rule_fsts="", rule_fars="", hr=HomophoneReplacerConfig(dict_dir="", lexicon="", rule_fsts=""))
Creating recognizer ...
Started
Done!
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-0.wav
{"lang": "<|yue|>", "emotion": "<|NEUTRAL|>", "event": "<|Speech|>", "text": "两只小企鹅都有嘢食", "timestamps": [0.36, 0.60, 0.84, 1.08, 1.32, 1.74, 1.98, 2.16, 2.40], "tokens":["两", "只", "小", "企", "鹅", "都", "有", "嘢", "食"], "words": []}
----
num threads: 1
decoding method: greedy_search
Elapsed seconds: 0.284 s
Real time factor (RTF): 0.284 / 3.072 = 0.092
yue-1.wav
Wave filename | Content | Ground truth |
---|---|---|
yue-1.wav | 叫做诶诶直入式你个脑部里边咧记得呢一个嘅以前香港有一个广告好出名嘅佢乜嘢都冇噶净系影住喺弥敦道佢哋间铺头嘅啫但系就不停有人嗌啦平平吧平吧 |
./build/bin/sherpa-onnx-offline \
--tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt \
--sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx \
--num-threads=1 \
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-1.wav
/Users/fangjun/open-source/sherpa-onnx/sherpa-onnx/csrc/parse-options.cc:Read:372 ./build/bin/sherpa-onnx-offline --tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt --sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx --num-threads=1 sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-1.wav
OfflineRecognizerConfig(feat_config=FeatureExtractorConfig(sampling_rate=16000, feature_dim=80, low_freq=20, high_freq=-400, dither=0, normalize_samples=True, snip_edges=False), model_config=OfflineModelConfig(transducer=OfflineTransducerModelConfig(encoder_filename="", decoder_filename="", joiner_filename=""), paraformer=OfflineParaformerModelConfig(model=""), nemo_ctc=OfflineNemoEncDecCtcModelConfig(model=""), whisper=OfflineWhisperModelConfig(encoder="", decoder="", language="", task="transcribe", tail_paddings=-1), fire_red_asr=OfflineFireRedAsrModelConfig(encoder="", decoder=""), tdnn=OfflineTdnnModelConfig(model=""), zipformer_ctc=OfflineZipformerCtcModelConfig(model=""), wenet_ctc=OfflineWenetCtcModelConfig(model=""), sense_voice=OfflineSenseVoiceModelConfig(model="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx", language="auto", use_itn=False), moonshine=OfflineMoonshineModelConfig(preprocessor="", encoder="", uncached_decoder="", cached_decoder=""), dolphin=OfflineDolphinModelConfig(model=""), canary=OfflineCanaryModelConfig(encoder="", decoder="", src_lang="", tgt_lang="", use_pnc=True), telespeech_ctc="", tokens="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt", num_threads=1, debug=False, provider="cpu", model_type="", modeling_unit="cjkchar", bpe_vocab=""), lm_config=OfflineLMConfig(model="", scale=0.5, lodr_scale=0.01, lodr_fst="", lodr_backoff_id=-1), ctc_fst_decoder_config=OfflineCtcFstDecoderConfig(graph="", max_active=3000), decoding_method="greedy_search", max_active_paths=4, hotwords_file="", hotwords_score=1.5, blank_penalty=0, rule_fsts="", rule_fars="", hr=HomophoneReplacerConfig(dict_dir="", lexicon="", rule_fsts=""))
Creating recognizer ...
Started
Done!
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-1.wav
{"lang": "<|yue|>", "emotion": "<|NEUTRAL|>", "event": "<|Speech|>", "text": "叫做诶诶直入式你个脑部里边呢记得呢一个嘅以前香港有一个广告好出名嘅佢乜嘢都冇噶净系影住喺弥敦度佢哋间铺头嘅啫但系就不停有人嗌啦平平吧平吧", "timestamps": [0.06, 0.18, 0.36, 0.72, 1.08, 1.38, 1.56, 1.86, 1.98, 2.16, 2.52, 2.76, 2.88, 3.00, 3.24, 3.36, 3.60, 3.72, 3.84, 3.96, 4.20, 4.32, 4.44, 4.62, 4.74, 4.86, 4.92, 5.04, 5.16, 5.34, 5.46, 5.58, 5.88, 6.30, 6.60, 6.78, 6.90, 7.02, 7.20, 7.50, 7.68, 7.80, 7.98, 8.16, 8.28, 8.46, 8.64, 8.88, 8.94, 9.18, 9.30, 9.48, 9.60, 9.78, 10.02, 10.14, 10.26, 10.50, 10.62, 10.80, 10.92, 11.04, 11.22, 12.00, 12.72, 13.02, 13.92, 14.16], "tokens":["叫", "做", "诶", "诶", "直", "入", "式", "你", "个", "脑", "部", "里", "边", "呢", "记", "得", "呢", "一", "个", "嘅", "以", "前", "香", "港", "有", "一", "个", "广", "告", "好", "出", "名", "嘅", "佢", "乜", "嘢", "都", "冇", "噶", "净", "系", "影", "住", "喺", "弥", "敦", "度", "佢", "哋", "间", "铺", "头", "嘅", "啫", "但", "系", "就", "不", "停", "有", "人", "嗌", "啦", "平", "平", "吧", "平", "吧"], "words": []}
----
num threads: 1
decoding method: greedy_search
Elapsed seconds: 1.423 s
Real time factor (RTF): 1.423 / 15.104 = 0.094
yue-2.wav
Wave filename | Content | Ground truth |
---|---|---|
yue-2.wav | 忽然从光线死角嘅阴影度窜出一只大猫 |
./build/bin/sherpa-onnx-offline \
--tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt \
--sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx \
--num-threads=1 \
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-2.wav
/Users/fangjun/open-source/sherpa-onnx/sherpa-onnx/csrc/parse-options.cc:Read:372 ./build/bin/sherpa-onnx-offline --tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt --sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx --num-threads=1 sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-2.wav
OfflineRecognizerConfig(feat_config=FeatureExtractorConfig(sampling_rate=16000, feature_dim=80, low_freq=20, high_freq=-400, dither=0, normalize_samples=True, snip_edges=False), model_config=OfflineModelConfig(transducer=OfflineTransducerModelConfig(encoder_filename="", decoder_filename="", joiner_filename=""), paraformer=OfflineParaformerModelConfig(model=""), nemo_ctc=OfflineNemoEncDecCtcModelConfig(model=""), whisper=OfflineWhisperModelConfig(encoder="", decoder="", language="", task="transcribe", tail_paddings=-1), fire_red_asr=OfflineFireRedAsrModelConfig(encoder="", decoder=""), tdnn=OfflineTdnnModelConfig(model=""), zipformer_ctc=OfflineZipformerCtcModelConfig(model=""), wenet_ctc=OfflineWenetCtcModelConfig(model=""), sense_voice=OfflineSenseVoiceModelConfig(model="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx", language="auto", use_itn=False), moonshine=OfflineMoonshineModelConfig(preprocessor="", encoder="", uncached_decoder="", cached_decoder=""), dolphin=OfflineDolphinModelConfig(model=""), canary=OfflineCanaryModelConfig(encoder="", decoder="", src_lang="", tgt_lang="", use_pnc=True), telespeech_ctc="", tokens="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt", num_threads=1, debug=False, provider="cpu", model_type="", modeling_unit="cjkchar", bpe_vocab=""), lm_config=OfflineLMConfig(model="", scale=0.5, lodr_scale=0.01, lodr_fst="", lodr_backoff_id=-1), ctc_fst_decoder_config=OfflineCtcFstDecoderConfig(graph="", max_active=3000), decoding_method="greedy_search", max_active_paths=4, hotwords_file="", hotwords_score=1.5, blank_penalty=0, rule_fsts="", rule_fars="", hr=HomophoneReplacerConfig(dict_dir="", lexicon="", rule_fsts=""))
Creating recognizer ...
Started
Done!
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-2.wav
{"lang": "<|yue|>", "emotion": "<|NEUTRAL|>", "event": "<|Speech|>", "text": "忽然从光线死角嘅阴影度窜出一只大猫", "timestamps": [0.36, 0.54, 0.96, 1.26, 1.50, 1.80, 2.04, 2.22, 2.40, 2.52, 2.76, 3.12, 3.30, 3.48, 3.60, 3.78, 3.90], "tokens":["忽", "然", "从", "光", "线", "死", "角", "嘅", "阴", "影", "度", "窜", "出", "一", "只", "大", "猫"], "words": []}
----
num threads: 1
decoding method: greedy_search
Elapsed seconds: 0.428 s
Real time factor (RTF): 0.428 / 4.608 = 0.093
yue-3.wav
Wave filename | Content | Ground truth |
---|---|---|
yue-3.wav | 今日我带大家去见识一位九零后嘅靓仔咧 |
./build/bin/sherpa-onnx-offline \
--tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt \
--sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx \
--num-threads=1 \
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-3.wav
/Users/fangjun/open-source/sherpa-onnx/sherpa-onnx/csrc/parse-options.cc:Read:372 ./build/bin/sherpa-onnx-offline --tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt --sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx --num-threads=1 sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-3.wav
OfflineRecognizerConfig(feat_config=FeatureExtractorConfig(sampling_rate=16000, feature_dim=80, low_freq=20, high_freq=-400, dither=0, normalize_samples=True, snip_edges=False), model_config=OfflineModelConfig(transducer=OfflineTransducerModelConfig(encoder_filename="", decoder_filename="", joiner_filename=""), paraformer=OfflineParaformerModelConfig(model=""), nemo_ctc=OfflineNemoEncDecCtcModelConfig(model=""), whisper=OfflineWhisperModelConfig(encoder="", decoder="", language="", task="transcribe", tail_paddings=-1), fire_red_asr=OfflineFireRedAsrModelConfig(encoder="", decoder=""), tdnn=OfflineTdnnModelConfig(model=""), zipformer_ctc=OfflineZipformerCtcModelConfig(model=""), wenet_ctc=OfflineWenetCtcModelConfig(model=""), sense_voice=OfflineSenseVoiceModelConfig(model="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx", language="auto", use_itn=False), moonshine=OfflineMoonshineModelConfig(preprocessor="", encoder="", uncached_decoder="", cached_decoder=""), dolphin=OfflineDolphinModelConfig(model=""), canary=OfflineCanaryModelConfig(encoder="", decoder="", src_lang="", tgt_lang="", use_pnc=True), telespeech_ctc="", tokens="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt", num_threads=1, debug=False, provider="cpu", model_type="", modeling_unit="cjkchar", bpe_vocab=""), lm_config=OfflineLMConfig(model="", scale=0.5, lodr_scale=0.01, lodr_fst="", lodr_backoff_id=-1), ctc_fst_decoder_config=OfflineCtcFstDecoderConfig(graph="", max_active=3000), decoding_method="greedy_search", max_active_paths=4, hotwords_file="", hotwords_score=1.5, blank_penalty=0, rule_fsts="", rule_fars="", hr=HomophoneReplacerConfig(dict_dir="", lexicon="", rule_fsts=""))
Creating recognizer ...
Started
Done!
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-3.wav
{"lang": "<|yue|>", "emotion": "<|NEUTRAL|>", "event": "<|Speech|>", "text": "今日我带大家去见识一位九零后嘅靓仔咧", "timestamps": [0.24, 0.36, 0.60, 0.72, 1.02, 1.14, 1.44, 1.74, 1.92, 2.10, 2.22, 2.52, 2.76, 2.94, 3.18, 3.30, 3.48, 3.78], "tokens":["今", "日", "我", "带", "大", "家", "去", "见", "识", "一", "位", "九", "零", "后", "嘅", "靓", "仔", "咧"], "words": []}
----
num threads: 1
decoding method: greedy_search
Elapsed seconds: 0.438 s
Real time factor (RTF): 0.438 / 4.352 = 0.101
yue-4.wav
Wave filename | Content | Ground truth |
---|---|---|
yue-4.wav | 香港嘅消费市场从此不一样 |
./build/bin/sherpa-onnx-offline \
--tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt \
--sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx \
--num-threads=1 \
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-4.wav
/Users/fangjun/open-source/sherpa-onnx/sherpa-onnx/csrc/parse-options.cc:Read:372 ./build/bin/sherpa-onnx-offline --tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt --sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx --num-threads=1 sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-4.wav
OfflineRecognizerConfig(feat_config=FeatureExtractorConfig(sampling_rate=16000, feature_dim=80, low_freq=20, high_freq=-400, dither=0, normalize_samples=True, snip_edges=False), model_config=OfflineModelConfig(transducer=OfflineTransducerModelConfig(encoder_filename="", decoder_filename="", joiner_filename=""), paraformer=OfflineParaformerModelConfig(model=""), nemo_ctc=OfflineNemoEncDecCtcModelConfig(model=""), whisper=OfflineWhisperModelConfig(encoder="", decoder="", language="", task="transcribe", tail_paddings=-1), fire_red_asr=OfflineFireRedAsrModelConfig(encoder="", decoder=""), tdnn=OfflineTdnnModelConfig(model=""), zipformer_ctc=OfflineZipformerCtcModelConfig(model=""), wenet_ctc=OfflineWenetCtcModelConfig(model=""), sense_voice=OfflineSenseVoiceModelConfig(model="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx", language="auto", use_itn=False), moonshine=OfflineMoonshineModelConfig(preprocessor="", encoder="", uncached_decoder="", cached_decoder=""), dolphin=OfflineDolphinModelConfig(model=""), canary=OfflineCanaryModelConfig(encoder="", decoder="", src_lang="", tgt_lang="", use_pnc=True), telespeech_ctc="", tokens="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt", num_threads=1, debug=False, provider="cpu", model_type="", modeling_unit="cjkchar", bpe_vocab=""), lm_config=OfflineLMConfig(model="", scale=0.5, lodr_scale=0.01, lodr_fst="", lodr_backoff_id=-1), ctc_fst_decoder_config=OfflineCtcFstDecoderConfig(graph="", max_active=3000), decoding_method="greedy_search", max_active_paths=4, hotwords_file="", hotwords_score=1.5, blank_penalty=0, rule_fsts="", rule_fars="", hr=HomophoneReplacerConfig(dict_dir="", lexicon="", rule_fsts=""))
Creating recognizer ...
Started
Done!
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-4.wav
{"lang": "<|yue|>", "emotion": "<|NEUTRAL|>", "event": "<|Speech|>", "text": "香港嘅消费市场从此不一样", "timestamps": [0.36, 0.54, 0.72, 0.90, 1.08, 1.38, 1.56, 1.92, 2.10, 2.40, 2.58, 2.76], "tokens":["香", "港", "嘅", "消", "费", "市", "场", "从", "此", "不", "一", "样"], "words": []}
----
num threads: 1
decoding method: greedy_search
Elapsed seconds: 0.303 s
Real time factor (RTF): 0.303 / 3.200 = 0.095
yue-5.wav
Wave filename | Content | Ground truth |
---|---|---|
yue-5.wav | 景天谂唔到呢个守门嘅弟子竟然咁无礼霎时间面色都变埋 |
./build/bin/sherpa-onnx-offline \
--tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt \
--sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx \
--num-threads=1 \
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-5.wav
/Users/fangjun/open-source/sherpa-onnx/sherpa-onnx/csrc/parse-options.cc:Read:372 ./build/bin/sherpa-onnx-offline --tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt --sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx --num-threads=1 sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-5.wav
OfflineRecognizerConfig(feat_config=FeatureExtractorConfig(sampling_rate=16000, feature_dim=80, low_freq=20, high_freq=-400, dither=0, normalize_samples=True, snip_edges=False), model_config=OfflineModelConfig(transducer=OfflineTransducerModelConfig(encoder_filename="", decoder_filename="", joiner_filename=""), paraformer=OfflineParaformerModelConfig(model=""), nemo_ctc=OfflineNemoEncDecCtcModelConfig(model=""), whisper=OfflineWhisperModelConfig(encoder="", decoder="", language="", task="transcribe", tail_paddings=-1), fire_red_asr=OfflineFireRedAsrModelConfig(encoder="", decoder=""), tdnn=OfflineTdnnModelConfig(model=""), zipformer_ctc=OfflineZipformerCtcModelConfig(model=""), wenet_ctc=OfflineWenetCtcModelConfig(model=""), sense_voice=OfflineSenseVoiceModelConfig(model="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx", language="auto", use_itn=False), moonshine=OfflineMoonshineModelConfig(preprocessor="", encoder="", uncached_decoder="", cached_decoder=""), dolphin=OfflineDolphinModelConfig(model=""), canary=OfflineCanaryModelConfig(encoder="", decoder="", src_lang="", tgt_lang="", use_pnc=True), telespeech_ctc="", tokens="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt", num_threads=1, debug=False, provider="cpu", model_type="", modeling_unit="cjkchar", bpe_vocab=""), lm_config=OfflineLMConfig(model="", scale=0.5, lodr_scale=0.01, lodr_fst="", lodr_backoff_id=-1), ctc_fst_decoder_config=OfflineCtcFstDecoderConfig(graph="", max_active=3000), decoding_method="greedy_search", max_active_paths=4, hotwords_file="", hotwords_score=1.5, blank_penalty=0, rule_fsts="", rule_fars="", hr=HomophoneReplacerConfig(dict_dir="", lexicon="", rule_fsts=""))
Creating recognizer ...
Started
Done!
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-5.wav
{"lang": "<|yue|>", "emotion": "<|NEUTRAL|>", "event": "<|Speech|>", "text": "景天谂唔到呢个守门嘅弟子竟然咁无礼霎时间面色都变埋", "timestamps": [0.42, 0.60, 0.96, 1.14, 1.20, 1.38, 1.50, 1.62, 1.86, 2.04, 2.22, 2.34, 3.06, 3.24, 3.42, 3.84, 4.08, 4.80, 5.16, 5.34, 5.58, 5.82, 6.06, 6.24, 6.42], "tokens":["景", "天", "谂", "唔", "到", "呢", "个", "守", "门", "嘅", "弟", "子", "竟", "然", "咁", "无", "礼", "霎", "时", "间", "面", "色", "都", "变", "埋"], "words": []}
----
num threads: 1
decoding method: greedy_search
Elapsed seconds: 0.660 s
Real time factor (RTF): 0.660 / 7.168 = 0.092
yue-6.wav
Wave filename | Content | Ground truth |
---|---|---|
yue-6.wav | 六个星期嘅课程包括六堂课同两个测验你唔掌握到基本嘅十九个声母五十六个韵母同九个声调我哋仲针对咗广东话学习者会遇到嘅大樽颈啊以国语为母语人士最难掌握嘅五大韵母教课书唔会教你嘅七种变音同十种变调说话生硬唔自然嘅根本性问题提供全新嘅学习方向等你突破难关 |
./build/bin/sherpa-onnx-offline \
--tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt \
--sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx \
--num-threads=1 \
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-6.wav
/Users/fangjun/open-source/sherpa-onnx/sherpa-onnx/csrc/parse-options.cc:Read:372 ./build/bin/sherpa-onnx-offline --tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt --sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx --num-threads=1 sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-6.wav
OfflineRecognizerConfig(feat_config=FeatureExtractorConfig(sampling_rate=16000, feature_dim=80, low_freq=20, high_freq=-400, dither=0, normalize_samples=True, snip_edges=False), model_config=OfflineModelConfig(transducer=OfflineTransducerModelConfig(encoder_filename="", decoder_filename="", joiner_filename=""), paraformer=OfflineParaformerModelConfig(model=""), nemo_ctc=OfflineNemoEncDecCtcModelConfig(model=""), whisper=OfflineWhisperModelConfig(encoder="", decoder="", language="", task="transcribe", tail_paddings=-1), fire_red_asr=OfflineFireRedAsrModelConfig(encoder="", decoder=""), tdnn=OfflineTdnnModelConfig(model=""), zipformer_ctc=OfflineZipformerCtcModelConfig(model=""), wenet_ctc=OfflineWenetCtcModelConfig(model=""), sense_voice=OfflineSenseVoiceModelConfig(model="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx", language="auto", use_itn=False), moonshine=OfflineMoonshineModelConfig(preprocessor="", encoder="", uncached_decoder="", cached_decoder=""), dolphin=OfflineDolphinModelConfig(model=""), canary=OfflineCanaryModelConfig(encoder="", decoder="", src_lang="", tgt_lang="", use_pnc=True), telespeech_ctc="", tokens="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt", num_threads=1, debug=False, provider="cpu", model_type="", modeling_unit="cjkchar", bpe_vocab=""), lm_config=OfflineLMConfig(model="", scale=0.5, lodr_scale=0.01, lodr_fst="", lodr_backoff_id=-1), ctc_fst_decoder_config=OfflineCtcFstDecoderConfig(graph="", max_active=3000), decoding_method="greedy_search", max_active_paths=4, hotwords_file="", hotwords_score=1.5, blank_penalty=0, rule_fsts="", rule_fars="", hr=HomophoneReplacerConfig(dict_dir="", lexicon="", rule_fsts=""))
Creating recognizer ...
Started
Done!
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-6.wav
{"lang": "<|yue|>", "emotion": "<|NEUTRAL|>", "event": "<|Speech|>", "text": "六个星期嘅课程包括六堂课同两个测验你只掌握到基本嘅十九个声母五十六个韵母同九个声调我哋仲针对咗广东话学习者会遇到嘅大樽颈啊以国语为母语人士最难掌握嘅五大韵母教课书唔会教你嘅七种变音同十种变调说话生硬唔自然嘅根本性问题提供全新嘅学习方向等你突破难关", "timestamps": [0.36, 0.66, 0.84, 1.08, 1.26, 1.44, 1.68, 2.16, 2.34, 2.58, 2.76, 2.94, 3.36, 3.60, 3.78, 4.02, 4.26, 4.86, 5.16, 5.40, 5.52, 5.70, 5.94, 6.06, 6.30, 6.54, 6.78, 6.96, 7.08, 7.32, 7.68, 7.80, 7.98, 8.10, 8.28, 8.52, 8.88, 9.12, 9.36, 9.54, 9.72, 10.14, 10.26, 10.44, 10.56, 10.74, 10.92, 11.22, 11.34, 11.52, 11.70, 11.82, 12.00, 12.42, 12.66, 12.84, 13.02, 13.44, 13.74, 13.98, 14.22, 14.52, 14.82, 15.00, 15.24, 15.42, 15.60, 15.84, 15.90, 16.32, 16.62, 16.86, 17.10, 17.28, 17.64, 17.82, 18.06, 18.30, 18.78, 19.02, 19.20, 19.50, 19.62, 19.80, 19.98, 20.16, 20.34, 20.58, 20.82, 21.00, 21.30, 21.54, 21.78, 22.02, 22.20, 22.98, 23.28, 23.52, 23.70, 24.18, 24.36, 24.60, 24.78, 25.14, 25.38, 25.68, 25.92, 26.04, 26.52, 26.70, 27.00, 27.18, 27.42, 27.60, 27.72, 27.90, 28.08, 28.50, 28.74, 29.28, 29.46, 29.76, 29.94], "tokens":["六", "个", "星", "期", "嘅", "课", "程", "包", "括", "六", "堂", "课", "同", "两", "个", "测", "验", "你", "只", "掌", "握", "到", "基", "本", "嘅", "十", "九", "个", "声", "母", "五", "十", "六", "个", "韵", "母", "同", "九", "个", "声", "调", "我", "哋", "仲", "针", "对", "咗", "广", "东", "话", "学", "习", "者", "会", "遇", "到", "嘅", "大", "樽", "颈", "啊", "以", "国", "语", "为", "母", "语", "人", "士", "最", "难", "掌", "握", "嘅", "五", "大", "韵", "母", "教", "课", "书", "唔", "会", "教", "你", "嘅", "七", "种", "变", "音", "同", "十", "种", "变", "调", "说", "话", "生", "硬", "唔", "自", "然", "嘅", "根", "本", "性", "问", "题", "提", "供", "全", "新", "嘅", "学", "习", "方", "向", "等", "你", "突", "破", "难", "关"], "words": []}
----
num threads: 1
decoding method: greedy_search
Elapsed seconds: 3.411 s
Real time factor (RTF): 3.411 / 30.592 = 0.111
yue-7.wav
Wave filename | Content | Ground truth |
---|---|---|
yue-7.wav | 同意嘅累积唔系阴同阳嘅累积可以讲三既融合咗一同意融合咗阴同阳 |
./build/bin/sherpa-onnx-offline \
--tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt \
--sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx \
--num-threads=1 \
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-7.wav
/Users/fangjun/open-source/sherpa-onnx/sherpa-onnx/csrc/parse-options.cc:Read:372 ./build/bin/sherpa-onnx-offline --tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt --sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx --num-threads=1 sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-7.wav
OfflineRecognizerConfig(feat_config=FeatureExtractorConfig(sampling_rate=16000, feature_dim=80, low_freq=20, high_freq=-400, dither=0, normalize_samples=True, snip_edges=False), model_config=OfflineModelConfig(transducer=OfflineTransducerModelConfig(encoder_filename="", decoder_filename="", joiner_filename=""), paraformer=OfflineParaformerModelConfig(model=""), nemo_ctc=OfflineNemoEncDecCtcModelConfig(model=""), whisper=OfflineWhisperModelConfig(encoder="", decoder="", language="", task="transcribe", tail_paddings=-1), fire_red_asr=OfflineFireRedAsrModelConfig(encoder="", decoder=""), tdnn=OfflineTdnnModelConfig(model=""), zipformer_ctc=OfflineZipformerCtcModelConfig(model=""), wenet_ctc=OfflineWenetCtcModelConfig(model=""), sense_voice=OfflineSenseVoiceModelConfig(model="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx", language="auto", use_itn=False), moonshine=OfflineMoonshineModelConfig(preprocessor="", encoder="", uncached_decoder="", cached_decoder=""), dolphin=OfflineDolphinModelConfig(model=""), canary=OfflineCanaryModelConfig(encoder="", decoder="", src_lang="", tgt_lang="", use_pnc=True), telespeech_ctc="", tokens="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt", num_threads=1, debug=False, provider="cpu", model_type="", modeling_unit="cjkchar", bpe_vocab=""), lm_config=OfflineLMConfig(model="", scale=0.5, lodr_scale=0.01, lodr_fst="", lodr_backoff_id=-1), ctc_fst_decoder_config=OfflineCtcFstDecoderConfig(graph="", max_active=3000), decoding_method="greedy_search", max_active_paths=4, hotwords_file="", hotwords_score=1.5, blank_penalty=0, rule_fsts="", rule_fars="", hr=HomophoneReplacerConfig(dict_dir="", lexicon="", rule_fsts=""))
Creating recognizer ...
Started
Done!
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-7.wav
{"lang": "<|yue|>", "emotion": "<|NEUTRAL|>", "event": "<|Speech|>", "text": "同二嘅累积唔系阴同阳嘅累积可以讲三既融合咗一同二融合咗阴同阳", "timestamps": [0.48, 0.84, 1.20, 1.38, 1.56, 2.52, 2.70, 3.00, 3.42, 3.66, 3.96, 4.20, 4.38, 5.40, 5.76, 6.00, 6.78, 7.86, 8.28, 8.46, 8.70, 9.24, 9.72, 10.08, 11.28, 11.46, 11.70, 12.12, 12.54, 12.78], "tokens":["同", "二", "嘅", "累", "积", "唔", "系", "阴", "同", "阳", "嘅", "累", "积", "可", "以", "讲", "三", "既", "融", "合", "咗", "一", "同", "二", "融", "合", "咗", "阴", "同", "阳"], "words": []}
----
num threads: 1
decoding method: greedy_search
Elapsed seconds: 1.382 s
Real time factor (RTF): 1.382 / 13.900 = 0.099
yue-8.wav
Wave filename | Content | Ground truth |
---|---|---|
yue-8.wav | 而较早前已经复航嘅氹仔北安码头星期五开始增设夜间航班不过两个码头暂时都冇凌晨班次有旅客希望尽快恢复可以留喺澳门长啲时间 |
./build/bin/sherpa-onnx-offline \
--tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt \
--sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx \
--num-threads=1 \
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-8.wav
/Users/fangjun/open-source/sherpa-onnx/sherpa-onnx/csrc/parse-options.cc:Read:372 ./build/bin/sherpa-onnx-offline --tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt --sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx --num-threads=1 sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-8.wav
OfflineRecognizerConfig(feat_config=FeatureExtractorConfig(sampling_rate=16000, feature_dim=80, low_freq=20, high_freq=-400, dither=0, normalize_samples=True, snip_edges=False), model_config=OfflineModelConfig(transducer=OfflineTransducerModelConfig(encoder_filename="", decoder_filename="", joiner_filename=""), paraformer=OfflineParaformerModelConfig(model=""), nemo_ctc=OfflineNemoEncDecCtcModelConfig(model=""), whisper=OfflineWhisperModelConfig(encoder="", decoder="", language="", task="transcribe", tail_paddings=-1), fire_red_asr=OfflineFireRedAsrModelConfig(encoder="", decoder=""), tdnn=OfflineTdnnModelConfig(model=""), zipformer_ctc=OfflineZipformerCtcModelConfig(model=""), wenet_ctc=OfflineWenetCtcModelConfig(model=""), sense_voice=OfflineSenseVoiceModelConfig(model="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx", language="auto", use_itn=False), moonshine=OfflineMoonshineModelConfig(preprocessor="", encoder="", uncached_decoder="", cached_decoder=""), dolphin=OfflineDolphinModelConfig(model=""), canary=OfflineCanaryModelConfig(encoder="", decoder="", src_lang="", tgt_lang="", use_pnc=True), telespeech_ctc="", tokens="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt", num_threads=1, debug=False, provider="cpu", model_type="", modeling_unit="cjkchar", bpe_vocab=""), lm_config=OfflineLMConfig(model="", scale=0.5, lodr_scale=0.01, lodr_fst="", lodr_backoff_id=-1), ctc_fst_decoder_config=OfflineCtcFstDecoderConfig(graph="", max_active=3000), decoding_method="greedy_search", max_active_paths=4, hotwords_file="", hotwords_score=1.5, blank_penalty=0, rule_fsts="", rule_fars="", hr=HomophoneReplacerConfig(dict_dir="", lexicon="", rule_fsts=""))
Creating recognizer ...
Started
Done!
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-8.wav
{"lang": "<|yue|>", "emotion": "<|NEUTRAL|>", "event": "<|Speech|>", "text": "而较早前已经复航嘅氹仔北安码头星期五开始增设夜间航班不过两个码头暂时都冇凌晨班次有旅客希望尽快恢复可以留喺澳门长啲时间", "timestamps": [0.30, 0.54, 0.72, 0.90, 1.14, 1.26, 1.50, 1.68, 1.86, 2.04, 2.28, 2.58, 2.70, 3.00, 3.12, 3.42, 3.60, 3.78, 4.02, 4.14, 4.44, 4.62, 4.92, 5.04, 5.28, 5.40, 6.12, 6.36, 6.60, 6.78, 6.96, 7.14, 7.44, 7.62, 7.80, 7.98, 8.16, 8.34, 8.58, 8.76, 9.54, 9.72, 9.90, 10.14, 10.26, 10.50, 10.62, 10.92, 11.10, 11.58, 11.70, 11.94, 12.06, 12.30, 12.48, 12.78, 12.96, 13.20, 13.44], "tokens":["而", "较", "早", "前", "已", "经", "复", "航", "嘅", "氹", "仔", "北", "安", "码", "头", "星", "期", "五", "开", "始", "增", "设", "夜", "间", "航", "班", "不", "过", "两", "个", "码", "头", "暂", "时", "都", "冇", "凌", "晨", "班", "次", "有", "旅", "客", "希", "望", "尽", "快", "恢", "复", "可", "以", "留", "喺", "澳", "门", "长", "啲", "时", "间"], "words": []}
----
num threads: 1
decoding method: greedy_search
Elapsed seconds: 1.406 s
Real time factor (RTF): 1.406 / 14.080 = 0.100
yue-9.wav
Wave filename | Content | Ground truth |
---|---|---|
yue-9.wav | 刘备仲马鞭一指蜀兵一齐掩杀过去打到吴兵大败唉刘备八路兵马以雷霆万钧之势啊杀到吴兵啊尸横遍野血流成河 |
./build/bin/sherpa-onnx-offline \
--tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt \
--sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx \
--num-threads=1 \
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-9.wav
/Users/fangjun/open-source/sherpa-onnx/sherpa-onnx/csrc/parse-options.cc:Read:372 ./build/bin/sherpa-onnx-offline --tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt --sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx --num-threads=1 sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-9.wav
OfflineRecognizerConfig(feat_config=FeatureExtractorConfig(sampling_rate=16000, feature_dim=80, low_freq=20, high_freq=-400, dither=0, normalize_samples=True, snip_edges=False), model_config=OfflineModelConfig(transducer=OfflineTransducerModelConfig(encoder_filename="", decoder_filename="", joiner_filename=""), paraformer=OfflineParaformerModelConfig(model=""), nemo_ctc=OfflineNemoEncDecCtcModelConfig(model=""), whisper=OfflineWhisperModelConfig(encoder="", decoder="", language="", task="transcribe", tail_paddings=-1), fire_red_asr=OfflineFireRedAsrModelConfig(encoder="", decoder=""), tdnn=OfflineTdnnModelConfig(model=""), zipformer_ctc=OfflineZipformerCtcModelConfig(model=""), wenet_ctc=OfflineWenetCtcModelConfig(model=""), sense_voice=OfflineSenseVoiceModelConfig(model="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx", language="auto", use_itn=False), moonshine=OfflineMoonshineModelConfig(preprocessor="", encoder="", uncached_decoder="", cached_decoder=""), dolphin=OfflineDolphinModelConfig(model=""), canary=OfflineCanaryModelConfig(encoder="", decoder="", src_lang="", tgt_lang="", use_pnc=True), telespeech_ctc="", tokens="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt", num_threads=1, debug=False, provider="cpu", model_type="", modeling_unit="cjkchar", bpe_vocab=""), lm_config=OfflineLMConfig(model="", scale=0.5, lodr_scale=0.01, lodr_fst="", lodr_backoff_id=-1), ctc_fst_decoder_config=OfflineCtcFstDecoderConfig(graph="", max_active=3000), decoding_method="greedy_search", max_active_paths=4, hotwords_file="", hotwords_score=1.5, blank_penalty=0, rule_fsts="", rule_fars="", hr=HomophoneReplacerConfig(dict_dir="", lexicon="", rule_fsts=""))
Creating recognizer ...
Started
Done!
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-9.wav
{"lang": "<|yue|>", "emotion": "<|NEUTRAL|>", "event": "<|Speech|>", "text": "刘备仲马鞭得子蜀兵一齐掩杀过去打到吴兵大败嘿刘备八路兵马以雷霆万军之势啊杀到吴兵啊尸横遍野血流成河", "timestamps": [0.30, 0.54, 0.72, 0.90, 1.14, 1.32, 1.44, 2.22, 2.58, 2.88, 3.06, 3.42, 3.60, 3.90, 3.96, 4.32, 4.50, 4.68, 4.92, 5.28, 5.46, 6.06, 6.60, 6.84, 7.26, 7.56, 7.74, 7.98, 8.58, 8.88, 9.12, 9.36, 9.60, 9.84, 10.08, 10.26, 10.38, 10.56, 10.80, 10.98, 11.22, 11.58, 12.12, 12.36, 12.66, 12.90, 13.14, 13.32, 13.50], "tokens":["刘", "备", "仲", "马", "鞭", "得", "子", "蜀", "兵", "一", "齐", "掩", "杀", "过", "去", "打", "到", "吴", "兵", "大", "败", "嘿", "刘", "备", "八", "路", "兵", "马", "以", "雷", "霆", "万", "军", "之", "势", "啊", "杀", "到", "吴", "兵", "啊", "尸", "横", "遍", "野", "血", "流", "成", "河"], "words": []}
----
num threads: 1
decoding method: greedy_search
Elapsed seconds: 1.438 s
Real time factor (RTF): 1.438 / 14.336 = 0.100
yue-10.wav
Wave filename | Content | Ground truth |
---|---|---|
yue-10.wav | 原来王力宏咧系佢家中里面咧成就最低个吓哇 |
./build/bin/sherpa-onnx-offline \
--tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt \
--sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx \
--num-threads=1 \
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-10.wav
/Users/fangjun/open-source/sherpa-onnx/sherpa-onnx/csrc/parse-options.cc:Read:372 ./build/bin/sherpa-onnx-offline --tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt --sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx --num-threads=1 sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-10.wav
OfflineRecognizerConfig(feat_config=FeatureExtractorConfig(sampling_rate=16000, feature_dim=80, low_freq=20, high_freq=-400, dither=0, normalize_samples=True, snip_edges=False), model_config=OfflineModelConfig(transducer=OfflineTransducerModelConfig(encoder_filename="", decoder_filename="", joiner_filename=""), paraformer=OfflineParaformerModelConfig(model=""), nemo_ctc=OfflineNemoEncDecCtcModelConfig(model=""), whisper=OfflineWhisperModelConfig(encoder="", decoder="", language="", task="transcribe", tail_paddings=-1), fire_red_asr=OfflineFireRedAsrModelConfig(encoder="", decoder=""), tdnn=OfflineTdnnModelConfig(model=""), zipformer_ctc=OfflineZipformerCtcModelConfig(model=""), wenet_ctc=OfflineWenetCtcModelConfig(model=""), sense_voice=OfflineSenseVoiceModelConfig(model="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx", language="auto", use_itn=False), moonshine=OfflineMoonshineModelConfig(preprocessor="", encoder="", uncached_decoder="", cached_decoder=""), dolphin=OfflineDolphinModelConfig(model=""), canary=OfflineCanaryModelConfig(encoder="", decoder="", src_lang="", tgt_lang="", use_pnc=True), telespeech_ctc="", tokens="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt", num_threads=1, debug=False, provider="cpu", model_type="", modeling_unit="cjkchar", bpe_vocab=""), lm_config=OfflineLMConfig(model="", scale=0.5, lodr_scale=0.01, lodr_fst="", lodr_backoff_id=-1), ctc_fst_decoder_config=OfflineCtcFstDecoderConfig(graph="", max_active=3000), decoding_method="greedy_search", max_active_paths=4, hotwords_file="", hotwords_score=1.5, blank_penalty=0, rule_fsts="", rule_fars="", hr=HomophoneReplacerConfig(dict_dir="", lexicon="", rule_fsts=""))
Creating recognizer ...
Started
Done!
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-10.wav
{"lang": "<|yue|>", "emotion": "<|NEUTRAL|>", "event": "<|Speech|>", "text": "原来王力宏呢系佢家中里边咧成就最低个吓哇", "timestamps": [0.42, 0.54, 0.90, 1.14, 1.44, 1.62, 1.80, 1.92, 2.16, 2.34, 2.58, 2.70, 2.82, 3.06, 3.24, 3.54, 3.78, 4.26, 4.92, 5.76], "tokens":["原", "来", "王", "力", "宏", "呢", "系", "佢", "家", "中", "里", "边", "咧", "成", "就", "最", "低", "个", "吓", "哇"], "words": []}
----
num threads: 1
decoding method: greedy_search
Elapsed seconds: 0.611 s
Real time factor (RTF): 0.611 / 6.656 = 0.092
yue-11.wav
Wave filename | Content | Ground truth |
---|---|---|
yue-11.wav | 无论你提出任何嘅要求 |
./build/bin/sherpa-onnx-offline \
--tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt \
--sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx \
--num-threads=1 \
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-11.wav
/Users/fangjun/open-source/sherpa-onnx/sherpa-onnx/csrc/parse-options.cc:Read:372 ./build/bin/sherpa-onnx-offline --tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt --sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx --num-threads=1 sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-11.wav
OfflineRecognizerConfig(feat_config=FeatureExtractorConfig(sampling_rate=16000, feature_dim=80, low_freq=20, high_freq=-400, dither=0, normalize_samples=True, snip_edges=False), model_config=OfflineModelConfig(transducer=OfflineTransducerModelConfig(encoder_filename="", decoder_filename="", joiner_filename=""), paraformer=OfflineParaformerModelConfig(model=""), nemo_ctc=OfflineNemoEncDecCtcModelConfig(model=""), whisper=OfflineWhisperModelConfig(encoder="", decoder="", language="", task="transcribe", tail_paddings=-1), fire_red_asr=OfflineFireRedAsrModelConfig(encoder="", decoder=""), tdnn=OfflineTdnnModelConfig(model=""), zipformer_ctc=OfflineZipformerCtcModelConfig(model=""), wenet_ctc=OfflineWenetCtcModelConfig(model=""), sense_voice=OfflineSenseVoiceModelConfig(model="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx", language="auto", use_itn=False), moonshine=OfflineMoonshineModelConfig(preprocessor="", encoder="", uncached_decoder="", cached_decoder=""), dolphin=OfflineDolphinModelConfig(model=""), canary=OfflineCanaryModelConfig(encoder="", decoder="", src_lang="", tgt_lang="", use_pnc=True), telespeech_ctc="", tokens="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt", num_threads=1, debug=False, provider="cpu", model_type="", modeling_unit="cjkchar", bpe_vocab=""), lm_config=OfflineLMConfig(model="", scale=0.5, lodr_scale=0.01, lodr_fst="", lodr_backoff_id=-1), ctc_fst_decoder_config=OfflineCtcFstDecoderConfig(graph="", max_active=3000), decoding_method="greedy_search", max_active_paths=4, hotwords_file="", hotwords_score=1.5, blank_penalty=0, rule_fsts="", rule_fars="", hr=HomophoneReplacerConfig(dict_dir="", lexicon="", rule_fsts=""))
Creating recognizer ...
Started
Done!
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-11.wav
{"lang": "<|yue|>", "emotion": "<|NEUTRAL|>", "event": "<|Speech|>", "text": "无论你提出任何嘅要求", "timestamps": [0.48, 0.60, 0.78, 1.02, 1.14, 1.32, 1.50, 1.68, 1.86, 2.10], "tokens":["无", "论", "你", "提", "出", "任", "何", "嘅", "要", "求"], "words": []}
----
num threads: 1
decoding method: greedy_search
Elapsed seconds: 0.293 s
Real time factor (RTF): 0.293 / 2.688 = 0.109
yue-12.wav
Wave filename | Content | Ground truth |
---|---|---|
yue-12.wav | 咁咁多样材料咁我哋首先第一步处理咗一件 |
./build/bin/sherpa-onnx-offline \
--tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt \
--sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx \
--num-threads=1 \
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-12.wav
/Users/fangjun/open-source/sherpa-onnx/sherpa-onnx/csrc/parse-options.cc:Read:372 ./build/bin/sherpa-onnx-offline --tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt --sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx --num-threads=1 sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-12.wav
OfflineRecognizerConfig(feat_config=FeatureExtractorConfig(sampling_rate=16000, feature_dim=80, low_freq=20, high_freq=-400, dither=0, normalize_samples=True, snip_edges=False), model_config=OfflineModelConfig(transducer=OfflineTransducerModelConfig(encoder_filename="", decoder_filename="", joiner_filename=""), paraformer=OfflineParaformerModelConfig(model=""), nemo_ctc=OfflineNemoEncDecCtcModelConfig(model=""), whisper=OfflineWhisperModelConfig(encoder="", decoder="", language="", task="transcribe", tail_paddings=-1), fire_red_asr=OfflineFireRedAsrModelConfig(encoder="", decoder=""), tdnn=OfflineTdnnModelConfig(model=""), zipformer_ctc=OfflineZipformerCtcModelConfig(model=""), wenet_ctc=OfflineWenetCtcModelConfig(model=""), sense_voice=OfflineSenseVoiceModelConfig(model="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx", language="auto", use_itn=False), moonshine=OfflineMoonshineModelConfig(preprocessor="", encoder="", uncached_decoder="", cached_decoder=""), dolphin=OfflineDolphinModelConfig(model=""), canary=OfflineCanaryModelConfig(encoder="", decoder="", src_lang="", tgt_lang="", use_pnc=True), telespeech_ctc="", tokens="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt", num_threads=1, debug=False, provider="cpu", model_type="", modeling_unit="cjkchar", bpe_vocab=""), lm_config=OfflineLMConfig(model="", scale=0.5, lodr_scale=0.01, lodr_fst="", lodr_backoff_id=-1), ctc_fst_decoder_config=OfflineCtcFstDecoderConfig(graph="", max_active=3000), decoding_method="greedy_search", max_active_paths=4, hotwords_file="", hotwords_score=1.5, blank_penalty=0, rule_fsts="", rule_fars="", hr=HomophoneReplacerConfig(dict_dir="", lexicon="", rule_fsts=""))
Creating recognizer ...
Started
Done!
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-12.wav
{"lang": "<|yue|>", "emotion": "<|NEUTRAL|>", "event": "<|Speech|>", "text": "咁咁多样材料咁我哋首先第一步处理咗一件", "timestamps": [0.30, 0.72, 0.90, 1.14, 1.38, 1.56, 1.92, 2.10, 2.22, 2.34, 2.58, 2.88, 3.00, 3.18, 3.60, 3.84, 4.02, 4.14, 4.26], "tokens":["咁", "咁", "多", "样", "材", "料", "咁", "我", "哋", "首", "先", "第", "一", "步", "处", "理", "咗", "一", "件"], "words": []}
----
num threads: 1
decoding method: greedy_search
Elapsed seconds: 0.435 s
Real time factor (RTF): 0.435 / 4.864 = 0.089
yue-13.wav
Wave filename | Content | Ground truth |
---|---|---|
yue-13.wav | 啲点样对于佢哋嘅服务态度啊不透过呢一年左右嘅时间啦其实大家都静一静啦咁你就会见到香港嘅经济其实 |
./build/bin/sherpa-onnx-offline \
--tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt \
--sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx \
--num-threads=1 \
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-13.wav
/Users/fangjun/open-source/sherpa-onnx/sherpa-onnx/csrc/parse-options.cc:Read:372 ./build/bin/sherpa-onnx-offline --tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt --sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx --num-threads=1 sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-13.wav
OfflineRecognizerConfig(feat_config=FeatureExtractorConfig(sampling_rate=16000, feature_dim=80, low_freq=20, high_freq=-400, dither=0, normalize_samples=True, snip_edges=False), model_config=OfflineModelConfig(transducer=OfflineTransducerModelConfig(encoder_filename="", decoder_filename="", joiner_filename=""), paraformer=OfflineParaformerModelConfig(model=""), nemo_ctc=OfflineNemoEncDecCtcModelConfig(model=""), whisper=OfflineWhisperModelConfig(encoder="", decoder="", language="", task="transcribe", tail_paddings=-1), fire_red_asr=OfflineFireRedAsrModelConfig(encoder="", decoder=""), tdnn=OfflineTdnnModelConfig(model=""), zipformer_ctc=OfflineZipformerCtcModelConfig(model=""), wenet_ctc=OfflineWenetCtcModelConfig(model=""), sense_voice=OfflineSenseVoiceModelConfig(model="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx", language="auto", use_itn=False), moonshine=OfflineMoonshineModelConfig(preprocessor="", encoder="", uncached_decoder="", cached_decoder=""), dolphin=OfflineDolphinModelConfig(model=""), canary=OfflineCanaryModelConfig(encoder="", decoder="", src_lang="", tgt_lang="", use_pnc=True), telespeech_ctc="", tokens="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt", num_threads=1, debug=False, provider="cpu", model_type="", modeling_unit="cjkchar", bpe_vocab=""), lm_config=OfflineLMConfig(model="", scale=0.5, lodr_scale=0.01, lodr_fst="", lodr_backoff_id=-1), ctc_fst_decoder_config=OfflineCtcFstDecoderConfig(graph="", max_active=3000), decoding_method="greedy_search", max_active_paths=4, hotwords_file="", hotwords_score=1.5, blank_penalty=0, rule_fsts="", rule_fars="", hr=HomophoneReplacerConfig(dict_dir="", lexicon="", rule_fsts=""))
Creating recognizer ...
Started
Done!
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-13.wav
{"lang": "<|yue|>", "emotion": "<|NEUTRAL|>", "event": "<|Speech|>", "text": "啲点样对于佢哋嘅服务态度啊希透过呢一年左右嘅时间啦其实大家都静一静啦咁你就会见到香港嘅经济其实", "timestamps": [0.00, 0.24, 0.48, 0.72, 0.84, 1.08, 1.20, 1.68, 2.16, 2.34, 2.58, 2.76, 2.94, 3.24, 3.54, 3.72, 4.02, 4.32, 4.50, 4.80, 4.98, 5.16, 5.34, 5.52, 5.70, 6.06, 6.24, 6.48, 6.60, 6.78, 7.02, 7.20, 7.38, 7.56, 7.92, 8.16, 8.34, 8.52, 8.70, 8.82, 9.00, 9.18, 9.36, 9.48, 9.66, 9.96, 10.14], "tokens":["啲", "点", "样", "对", "于", "佢", "哋", "嘅", "服", "务", "态", "度", "啊", "希", "透", "过", "呢", "一", "年", "左", "右", "嘅", "时", "间", "啦", "其", "实", "大", "家", "都", "静", "一", "静", "啦", "咁", "你", "就", "会", "见", "到", "香", "港", "嘅", "经", "济", "其", "实"], "words": []}
----
num threads: 1
decoding method: greedy_search
Elapsed seconds: 1.362 s
Real time factor (RTF): 1.362 / 10.624 = 0.128
yue-14.wav
Wave filename | Content | Ground truth |
---|---|---|
yue-14.wav | 就即刻会同贵正两位八代长老带埋五名七代弟子前啲灵蛇岛想话生擒谢信抢咗屠龙宝刀翻嚟献俾帮主嘅 |
./build/bin/sherpa-onnx-offline \
--tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt \
--sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx \
--num-threads=1 \
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-14.wav
/Users/fangjun/open-source/sherpa-onnx/sherpa-onnx/csrc/parse-options.cc:Read:372 ./build/bin/sherpa-onnx-offline --tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt --sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx --num-threads=1 sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-14.wav
OfflineRecognizerConfig(feat_config=FeatureExtractorConfig(sampling_rate=16000, feature_dim=80, low_freq=20, high_freq=-400, dither=0, normalize_samples=True, snip_edges=False), model_config=OfflineModelConfig(transducer=OfflineTransducerModelConfig(encoder_filename="", decoder_filename="", joiner_filename=""), paraformer=OfflineParaformerModelConfig(model=""), nemo_ctc=OfflineNemoEncDecCtcModelConfig(model=""), whisper=OfflineWhisperModelConfig(encoder="", decoder="", language="", task="transcribe", tail_paddings=-1), fire_red_asr=OfflineFireRedAsrModelConfig(encoder="", decoder=""), tdnn=OfflineTdnnModelConfig(model=""), zipformer_ctc=OfflineZipformerCtcModelConfig(model=""), wenet_ctc=OfflineWenetCtcModelConfig(model=""), sense_voice=OfflineSenseVoiceModelConfig(model="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx", language="auto", use_itn=False), moonshine=OfflineMoonshineModelConfig(preprocessor="", encoder="", uncached_decoder="", cached_decoder=""), dolphin=OfflineDolphinModelConfig(model=""), canary=OfflineCanaryModelConfig(encoder="", decoder="", src_lang="", tgt_lang="", use_pnc=True), telespeech_ctc="", tokens="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt", num_threads=1, debug=False, provider="cpu", model_type="", modeling_unit="cjkchar", bpe_vocab=""), lm_config=OfflineLMConfig(model="", scale=0.5, lodr_scale=0.01, lodr_fst="", lodr_backoff_id=-1), ctc_fst_decoder_config=OfflineCtcFstDecoderConfig(graph="", max_active=3000), decoding_method="greedy_search", max_active_paths=4, hotwords_file="", hotwords_score=1.5, blank_penalty=0, rule_fsts="", rule_fars="", hr=HomophoneReplacerConfig(dict_dir="", lexicon="", rule_fsts=""))
Creating recognizer ...
Started
Done!
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-14.wav
{"lang": "<|yue|>", "emotion": "<|NEUTRAL|>", "event": "<|Speech|>", "text": "就即刻会同贵正两位八代长老带埋五名七代弟子前啲灵蛇岛想话生擒谢信抢咗屠龙宝都翻嚟献俾帮主嘅", "timestamps": [0.18, 0.36, 0.48, 0.72, 0.84, 1.20, 1.44, 1.74, 1.92, 2.10, 2.28, 2.52, 2.76, 3.60, 3.84, 4.14, 4.32, 4.56, 4.80, 5.04, 5.22, 5.88, 6.12, 6.24, 6.42, 6.78, 7.68, 7.92, 8.16, 8.52, 8.88, 9.18, 10.02, 10.26, 10.38, 10.62, 10.86, 11.10, 11.22, 11.40, 11.64, 11.88, 12.18, 12.30, 12.66], "tokens":["就", "即", "刻", "会", "同", "贵", "正", "两", "位", "八", "代", "长", "老", "带", "埋", "五", "名", "七", "代", "弟", "子", "前", "啲", "灵", "蛇", "岛", "想", "话", "生", "擒", "谢", "信", "抢", "咗", "屠", "龙", "宝", "都", "翻", "嚟", "献", "俾", "帮", "主", "嘅"], "words": []}
----
num threads: 1
decoding method: greedy_search
Elapsed seconds: 1.293 s
Real time factor (RTF): 1.293 / 13.056 = 0.099
yue-15.wav
Wave filename | Content | Ground truth |
---|---|---|
yue-15.wav | 我知道我的观众大部分都是对广东话有兴趣想学广东话的人 |
./build/bin/sherpa-onnx-offline \
--tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt \
--sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx \
--num-threads=1 \
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-15.wav
/Users/fangjun/open-source/sherpa-onnx/sherpa-onnx/csrc/parse-options.cc:Read:372 ./build/bin/sherpa-onnx-offline --tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt --sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx --num-threads=1 sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-15.wav
OfflineRecognizerConfig(feat_config=FeatureExtractorConfig(sampling_rate=16000, feature_dim=80, low_freq=20, high_freq=-400, dither=0, normalize_samples=True, snip_edges=False), model_config=OfflineModelConfig(transducer=OfflineTransducerModelConfig(encoder_filename="", decoder_filename="", joiner_filename=""), paraformer=OfflineParaformerModelConfig(model=""), nemo_ctc=OfflineNemoEncDecCtcModelConfig(model=""), whisper=OfflineWhisperModelConfig(encoder="", decoder="", language="", task="transcribe", tail_paddings=-1), fire_red_asr=OfflineFireRedAsrModelConfig(encoder="", decoder=""), tdnn=OfflineTdnnModelConfig(model=""), zipformer_ctc=OfflineZipformerCtcModelConfig(model=""), wenet_ctc=OfflineWenetCtcModelConfig(model=""), sense_voice=OfflineSenseVoiceModelConfig(model="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx", language="auto", use_itn=False), moonshine=OfflineMoonshineModelConfig(preprocessor="", encoder="", uncached_decoder="", cached_decoder=""), dolphin=OfflineDolphinModelConfig(model=""), canary=OfflineCanaryModelConfig(encoder="", decoder="", src_lang="", tgt_lang="", use_pnc=True), telespeech_ctc="", tokens="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt", num_threads=1, debug=False, provider="cpu", model_type="", modeling_unit="cjkchar", bpe_vocab=""), lm_config=OfflineLMConfig(model="", scale=0.5, lodr_scale=0.01, lodr_fst="", lodr_backoff_id=-1), ctc_fst_decoder_config=OfflineCtcFstDecoderConfig(graph="", max_active=3000), decoding_method="greedy_search", max_active_paths=4, hotwords_file="", hotwords_score=1.5, blank_penalty=0, rule_fsts="", rule_fars="", hr=HomophoneReplacerConfig(dict_dir="", lexicon="", rule_fsts=""))
Creating recognizer ...
Started
Done!
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-15.wav
{"lang": "<|yue|>", "emotion": "<|NEUTRAL|>", "event": "<|Speech|>", "text": "我知道我嘅观众大部分都系对广东话有兴趣想学广东话嘅人", "timestamps": [0.42, 0.54, 0.66, 0.84, 1.02, 1.20, 1.38, 1.98, 2.22, 2.40, 2.64, 2.76, 2.88, 3.12, 3.24, 3.42, 3.60, 3.78, 4.02, 4.62, 4.92, 5.16, 5.34, 5.52, 5.70, 5.94], "tokens":["我", "知", "道", "我", "嘅", "观", "众", "大", "部", "分", "都", "系", "对", "广", "东", "话", "有", "兴", "趣", "想", "学", "广", "东", "话", "嘅", "人"], "words": []}
----
num threads: 1
decoding method: greedy_search
Elapsed seconds: 0.582 s
Real time factor (RTF): 0.582 / 6.400 = 0.091
yue-16.wav
Wave filename | Content | Ground truth |
---|---|---|
yue-16.wav | 诶原来啊我哋中国人呢讲究物极必反 |
./build/bin/sherpa-onnx-offline \
--tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt \
--sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx \
--num-threads=1 \
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-16.wav
/Users/fangjun/open-source/sherpa-onnx/sherpa-onnx/csrc/parse-options.cc:Read:372 ./build/bin/sherpa-onnx-offline --tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt --sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx --num-threads=1 sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-16.wav
OfflineRecognizerConfig(feat_config=FeatureExtractorConfig(sampling_rate=16000, feature_dim=80, low_freq=20, high_freq=-400, dither=0, normalize_samples=True, snip_edges=False), model_config=OfflineModelConfig(transducer=OfflineTransducerModelConfig(encoder_filename="", decoder_filename="", joiner_filename=""), paraformer=OfflineParaformerModelConfig(model=""), nemo_ctc=OfflineNemoEncDecCtcModelConfig(model=""), whisper=OfflineWhisperModelConfig(encoder="", decoder="", language="", task="transcribe", tail_paddings=-1), fire_red_asr=OfflineFireRedAsrModelConfig(encoder="", decoder=""), tdnn=OfflineTdnnModelConfig(model=""), zipformer_ctc=OfflineZipformerCtcModelConfig(model=""), wenet_ctc=OfflineWenetCtcModelConfig(model=""), sense_voice=OfflineSenseVoiceModelConfig(model="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx", language="auto", use_itn=False), moonshine=OfflineMoonshineModelConfig(preprocessor="", encoder="", uncached_decoder="", cached_decoder=""), dolphin=OfflineDolphinModelConfig(model=""), canary=OfflineCanaryModelConfig(encoder="", decoder="", src_lang="", tgt_lang="", use_pnc=True), telespeech_ctc="", tokens="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt", num_threads=1, debug=False, provider="cpu", model_type="", modeling_unit="cjkchar", bpe_vocab=""), lm_config=OfflineLMConfig(model="", scale=0.5, lodr_scale=0.01, lodr_fst="", lodr_backoff_id=-1), ctc_fst_decoder_config=OfflineCtcFstDecoderConfig(graph="", max_active=3000), decoding_method="greedy_search", max_active_paths=4, hotwords_file="", hotwords_score=1.5, blank_penalty=0, rule_fsts="", rule_fars="", hr=HomophoneReplacerConfig(dict_dir="", lexicon="", rule_fsts=""))
Creating recognizer ...
Started
Done!
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-16.wav
{"lang": "<|yue|>", "emotion": "<|NEUTRAL|>", "event": "<|Speech|>", "text": "原来啊我哋中国人呢讲究密极必反", "timestamps": [1.92, 2.04, 2.22, 2.64, 2.76, 2.94, 3.12, 3.36, 3.48, 3.72, 3.84, 4.02, 4.20, 4.44, 4.62], "tokens":["原", "来", "啊", "我", "哋", "中", "国", "人", "呢", "讲", "究", "密", "极", "必", "反"], "words": []}
----
num threads: 1
decoding method: greedy_search
Elapsed seconds: 0.600 s
Real time factor (RTF): 0.600 / 5.700 = 0.105
yue-17.wav
Wave filename | Content | Ground truth |
---|---|---|
yue-17.wav | 如果东边道建成咁丹东呢就会成为最近嘅出海港同埋经过哈大线出海相比绥分河则会减少运渠三百五十六公里 |
./build/bin/sherpa-onnx-offline \
--tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt \
--sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx \
--num-threads=1 \
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-17.wav
/Users/fangjun/open-source/sherpa-onnx/sherpa-onnx/csrc/parse-options.cc:Read:372 ./build/bin/sherpa-onnx-offline --tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt --sense-voice-model=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx --num-threads=1 sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-17.wav
OfflineRecognizerConfig(feat_config=FeatureExtractorConfig(sampling_rate=16000, feature_dim=80, low_freq=20, high_freq=-400, dither=0, normalize_samples=True, snip_edges=False), model_config=OfflineModelConfig(transducer=OfflineTransducerModelConfig(encoder_filename="", decoder_filename="", joiner_filename=""), paraformer=OfflineParaformerModelConfig(model=""), nemo_ctc=OfflineNemoEncDecCtcModelConfig(model=""), whisper=OfflineWhisperModelConfig(encoder="", decoder="", language="", task="transcribe", tail_paddings=-1), fire_red_asr=OfflineFireRedAsrModelConfig(encoder="", decoder=""), tdnn=OfflineTdnnModelConfig(model=""), zipformer_ctc=OfflineZipformerCtcModelConfig(model=""), wenet_ctc=OfflineWenetCtcModelConfig(model=""), sense_voice=OfflineSenseVoiceModelConfig(model="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/model.int8.onnx", language="auto", use_itn=False), moonshine=OfflineMoonshineModelConfig(preprocessor="", encoder="", uncached_decoder="", cached_decoder=""), dolphin=OfflineDolphinModelConfig(model=""), canary=OfflineCanaryModelConfig(encoder="", decoder="", src_lang="", tgt_lang="", use_pnc=True), telespeech_ctc="", tokens="./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/tokens.txt", num_threads=1, debug=False, provider="cpu", model_type="", modeling_unit="cjkchar", bpe_vocab=""), lm_config=OfflineLMConfig(model="", scale=0.5, lodr_scale=0.01, lodr_fst="", lodr_backoff_id=-1), ctc_fst_decoder_config=OfflineCtcFstDecoderConfig(graph="", max_active=3000), decoding_method="greedy_search", max_active_paths=4, hotwords_file="", hotwords_score=1.5, blank_penalty=0, rule_fsts="", rule_fars="", hr=HomophoneReplacerConfig(dict_dir="", lexicon="", rule_fsts=""))
Creating recognizer ...
Started
Done!
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-int8-2025-09-09/test_wavs/yue-17.wav
{"lang": "<|yue|>", "emotion": "<|NEUTRAL|>", "event": "<|Speech|>", "text": "如果东边道建成咁丹东呢就会成为最近嘅出海港同埋经过哈大线出海相比绥分河将会减少运渠三百五十六公里", "timestamps": [0.48, 0.60, 0.84, 0.96, 1.20, 1.50, 1.74, 2.58, 3.00, 3.18, 3.36, 3.78, 4.02, 4.20, 4.32, 4.56, 4.74, 4.92, 5.04, 5.22, 5.46, 6.36, 6.54, 6.78, 6.90, 7.08, 7.26, 7.50, 7.80, 7.92, 8.16, 8.34, 9.24, 9.54, 9.84, 10.26, 10.50, 10.74, 10.86, 11.22, 11.40, 11.82, 12.12, 12.30, 12.48, 12.60, 12.84, 13.02], "tokens":["如", "果", "东", "边", "道", "建", "成", "咁", "丹", "东", "呢", "就", "会", "成", "为", "最", "近", "嘅", "出", "海", "港", "同", "埋", "经", "过", "哈", "大", "线", "出", "海", "相", "比", "绥", "分", "河", "将", "会", "减", "少", "运", "渠", "三", "百", "五", "十", "六", "公", "里"], "words": []}
----
num threads: 1
decoding method: greedy_search
Elapsed seconds: 1.335 s
Real time factor (RTF): 1.335 / 13.800 = 0.097